DOI QR코드

DOI QR Code

Experimental investigation on strength of CFRST composite truss girder

  • Yinping Ma (School of Civil Engineering, Chongqing University) ;
  • Yongjian Liu (School of Civil Engineering, Chongqing University) ;
  • Kun Wang (School of Highway, Chang'an University)
  • 투고 : 2022.12.23
  • 심사 : 2023.09.13
  • 발행 : 2023.09.25

초록

Concrete filled rectangular steel tubular (CFRST) composite truss girder is composed of the CFRST truss and concrete slab. The failure mechanism of the girder was different under bending and shear failure modes. The bending and shear strength of the girder were investigated experimentally. The influences of composite effect and shear to span ratio on failure modes of the girder was studied. Results indicated that the top chord and the joint of the truss were strengthened by the composited effect. The failure modes of the specimens were changed from the joint on top chord to the bottom chord. However, the composite effect had limited effect on the failure modes of the girder with small shear to span ratio. The concrete slab and top chord can be regarded as the composite top chord. In this case, the axial force distribution of the girder was close to the pin-jointed truss model. An approach of strength prediction was proposed which can take the composite effect and shear to span ratio into account. The approach gave accurate predictions on the strength of CFRST composite truss girder under different bending and shear failure modes.

키워드

과제정보

This study was funded by the Supported by the Fundamental Research Funds for the Central Universities, CHD (No. 300102213516) and Natural Science Foundation of China (No. 51378068), which are gratefully acknowledged.

참고문헌

  1. Chen, Y., Feng, R. and Gao, S.W. (2015), "Experimental study of concrete-filled multiplanar circular hollow section tubular trusses", Thin-Walled Struct., 94, 199-213. https://doi.org/10.1016/j.tws.2015.04.013.
  2. Chen, Y., Zhu, L.Q. and Yang, Y. (2022), "Test study of precast SRC column under combined compression and shear loading", Steel Compos. Struct., 42(2), 265-275. https://doi.org/10.12989/scs.2022.42.2.265.
  3. CIDECT 3 (2009), Design Guide for Rectangular Hollow Section (RHS) Joints under Predominantly Static Loading, Koln, Germany.
  4. Feng, R. and Young, B. (2011), "Design of cold-formed stainless steel tubular T- and X-joints", J. Constr. Steel Res., 67, 421-436. https:// doi.org/ 10.1016/j.jcsr.2010.09.011.
  5. Feng, R., Chen, Y., Gao, S.W. and Zhang, W. (2015), "Numerical investigation of concrete-filled multi-planar CHS Inverse-Triangular tubular truss", Thin-Wall. Struct., 94, 23-37. https://doi.org/ 10.1016/j.tws.2015.03.030.
  6. Gao, S., Yang, B., Guo, L.H., Xu, M. and Fu, F. (2022), "Studies on CFST column to steel beam joints using endplates and long bolts under central column removal", Steel Compos. Struct., 42(2),161-172. https:// doi.org/10.12989/scs.2022.42.2.161.
  7. GB 50010-2010 (2010), Code for Design of Concrete Structures. Ministry of Construction of the People's Republic of China; Beijing China.
  8. Han, L.H., He, S.H. and Liao, F.Y. (2011), "Performance and calculations of concrete filled steel tubes (CFST) under axial tension", J. Constr. Steel Res., 67:1699-709. https://doi.org/10.1016/j.jcsr.2011.04.005.
  9. Han, L.H., Xu, W., He, S.H. and Tao, Z. (2015), "Flexural behaviour of concrete filled steel tubular (CFST) chord to hollow tubular brace truss: experiments", J. Constr. Steel Res., 109, 137-151. https:// doi.org/ 10.1016/j.jcsr.2015.03.002.
  10. Hu, B. and Wang, J.F. (2017), "Experimental investigation and analysis on flexural behavior of CFSTTC beams", Thin-Wall. Struct., 116, 277-290. https://doi.org/10.1016/j.tws.2017.03.024.
  11. Huang, Y.H., Liu, A.R., Fu, J.Y. and Pi, Y.L. (2017), "Experimental investigation of the flexural behavior of CFST trusses with interfacial imperfection", J Constr Steel Res., 137, 52-65. https://doi.org/10.1016/j.jcsr.2017.06.009.
  12. Huang, W.J., Fenu, L.G., Chen, B.C. and Briseghella, B. (2018), "Experimental study on joint resistance and failure modes of concrete filled steel tubular (CFST) truss girders", J. Constr. Steel Res., 141, 241-250. https://doi.org/10.1016/j.jcsr.2017.10.020
  13. Huang, W.J., Lai, Z.C., Chen, B.C., Xie, Z.T. and Varma, A.H. (2018), "Concrete-filled steel tube (CFT) truss girders: Experimental tests, analysis, and design", Eng Struct., 156, 118-129. https:// doi.org/ 10.1016/j.engstruct.2017.11.026.
  14. Hou, C., Han, L.H. and Mu, T.M. (2017) , "Behaviour of CFDST chord to CHS brace composite K-joints: Experiments", J. Constr. Steel Res., 135, 97-109. https://doi.org/10.1016/j.jcsr.2017.04.015.
  15. Li, H.T. and Young, B. (2018), "Design of concrete-filled high strength steel tubular joints subjected to compression", J. Constr. Steel Res, 150:209-20. https://doi.org/10.1016/j.jcsr.2018.07.030.
  16. Liu, B., Liu, Y.J., Jiang, L. and Wang, K.N. (2020), "Flexural behavior of concrete-filled rectangular steel tubular composite truss beams in the negative moment region", Eng Struct., 216, 110738. https://doi.org/ 10.1016/j.engstruct.2020.110738.
  17. Liu, Y.J., Liu, J.P., Yang, G.J. and Deng, Y.B. (2009), "Experimental research on mechanical behavior of RHS trusses with concrete-filled in chord", J. Build. Struct., 30, 107-112. https:// doi.org/ 10.14006/j.jzjgxb.2009.06.014. (In Chinese)
  18. Liu, Y.J., Liu, J.P. and Zhang J.G. (2010), "Experimental research on RHS and CHS truss with concrete filled chord", J. Build. Struct., 31, 86-93. https://doi.org/10.14006/j.jzjgxb.2010.04.011. (In Chinese)
  19. Liu, Y.J., Xiong, Z.H., Feng, Y.C. and Jiang, L. (2017), "Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: Ultimate and fatigue experimental investigation", Steel Compos. Struct., 24(4), 455-465. https://doi.org/10.12989/scs.2017.24.4.455.
  20. Ma, Y.P., Liu, Y.J., Wang, K., Liu, J. and Zhang, Z.J. (2021), "Axial stiffness of concrete filled rectangular steel tubular (CFRST) truss joints", J. Constr. Steel Res., 184, 106820. https:// doi.org/ 10.1016/j.jcsr.2021.106820.
  21. Ma, Y.P., Liu, Y.J., Ma, T.Y. and Zafimandimby, M.N.K. (2021), "Flexural Stiffness of Rectangular Hollow Section (RHS) Trusses", Eng Struct., 239, 112336. https://doi.org/10.1016/j.engstruct.2021.112336.
  22. Ma, Y.P., Liu, Y.J., Wang, K., Ma, T.Y., Yang, J., Liu, J.P. Gao, Y.M. and Li, H. (2022), "Flexural behavior of concrete-filled rectangular steel tubular (CFRST) trusses", Structures, 36, 32-49. https://doi.org/10.1016/j.istruc.2021.11.049.
  23. Mato, F.M., Cornejo, M.O. and Rubio, L.M. (2014), "Viaduct over River Ulla: An Outstanding Composite (Steel and Concrete) High-Speed Railway Viaduct", Struct. Eng. Int., 24, 131-136. https://doi.org/10.2749/101686614X13830788506279.
  24. Sakai, Y., Hosaka, T., Isoe, A., Ichikawa, A. and Mitsuki, K. (2004), "Experiments on concrete filled and reinforced tubular K-joints of truss girder", J. Constr. Steel Res., 60, 683-699. https://doi.org/10.1016/S0143-974X(03)00136-6.
  25. Tian, Z.J., Liu, Y.J., Jiang, L., Zhu, W.Q. and Ma, Y.P. (2019), "A review on application of composite truss bridges composed of hollow structural section members", J. Traffic Transp. Eng., 6, 94-108. https://doi.org/10.1016/j.jtte.2018.12.001.
  26. Tousignant, K. and Packer, J.A. (2019), "Analysis of rectangular hollow section trusses", Can. J. Civ. Eng., 46, 160-175. https://doi.org/10.1139/cjce-2018-0105.
  27. Yang, Y., Chen, X., Xue, Y.C., Yu, Y.L. and Zhang, C.R. (2021), "Shear behavior of concrete-encased square concrete-filled steel tube members: Experiments and strength prediction", Steel Compos. Struct., 38(4), 431-445. https://doi.org/10.12989/scs.2021.38.4.431.
  28. Zhou, C., Wang, J.Q., Jia, W.B. and Fang, Z. (2022), "Torsional behavior of ultra-high performance concrete (UHPC) rectangular beams without steel reinforcement: Experimental investigation and theoretical analysis", Compos. Struct., 299, 116022. https:// doi.org/ 10.1016/ j.compstruct. 2022.116022.
  29. Zhou, C., Wang, J.Q., Shao, X.D., Li, L.F., Sun, J.B. and Wang, X.Y. (2023) "The feasibility of using ultra-high performance concrete (UHPC) to strengthen RC beams in torsion", J. Mater. Res. Technol., 24, 9961-9983. https://doi.org/10.1016/j.jmrt.2023.05.185.