Acknowledgement
This research is financially supported by SERB, DST, Govt. of India under "Start-up Research Grant (SRG)" scheme (SRG/2019/001860; Sanction order no: SERB/F7721/2019-20, Dated. 17/12/2019) and TEQIP-III, VSSUT, India under "Collaborative Research and Innovation Scheme" grant via. reference no. VSSUT/TEQIP/86/2020 dated 20/01/2020.
References
- Abrate, S. (1994), "Optimal design of laminated plates and shells", Compos. Struct., 29(3), 269-286. https://doi.org/10.1016/0263-8223(94)90024-8.
- Adali, S., Sadek, I.S., Bruch, J.C. and Sloss, J.M. (2005), "Optimization of composite plates with Piezoelectric stiffener-actuators under in-plane compressive loads", Compos. Struct., Fifth International Conference on Composite Science and Technology, 71(3), 293-301. https://doi.org/10.1016/j.compstruct.2005.09.040.
- Ameri, A., Fekrar, A., Bourada, F., Selim, M.M., Benrahou, K.H. and Tounsi, A. (2021), "Hygro-thermo-mechanical bending of laminated composite plates using an innovative computational four variable refined quasi-3D HSDT model", Steel Compos. Struct., 41(1), 31-44. https://doi.org/10.12989/scs.2021.41.1.031.
- Ameri, E., Aghdam, M.M. and Shakeri, M. (2012), "Global optimization of laminated cylindrical panels based on fundamental natural frequency", Compos. Struct., 94(9), 2697-2705. https://doi.org/10.1016/j.compstruct.2012.04.005.
- Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005.
- Belbachir, N., Draiche, K., Bousahla, A.A., Bourada, M. and Tounsi, A. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
- Chen, J., Tang, Y., Ge, R., An, Q. and Guo, X. (2013), "Reliability design optimization of composite structures based on PSO together with FEA", Chinese J. Aeronaut., 26(April), 343-349. https://doi.org/10.1016/j.cja.2013.02.011.
- Cho, H.K. (2009), "Optimization of dynamic behaviors of an orthotropic composite shell subjected to hygrothermal environment", Finite Elem. Anal. Des., 45(11), 852-860. https://doi.org/10.1016/j.finel.2009.06.029.
- Correia, I.F.P., Martins, P.G., Soares, C.M.M., Soares, C.A.M. and Herskovits, J. (2006), "Modelling and optimization of laminated adaptive shells of revolution", Compos. Struct., 75(1-4), 49-59. https://doi.org/10.1016/j.compstruct.2006.04.003.
- Das, A., Hirwani, C.K., Panda, S.K., Topal, U. and Dede, T. (2018), "Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques", Steel Compos. Struct., 29(6), 749-758. https://doi.org/10.12989/scs.2018.29.6.749.
- Dastjerdi, R.M. and Payganeh, G. (2017), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., 25(3), 315-326. https://doi.org/10.12989/scs.2017.25.3.315.
- Draiche, K., Selim, M.M., Bousahla, A.A. Tounsi, A., Bourada, F. and Tounsi, A. (2021), "A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT", Steel Compos. Struct., 41(5), 697-711. https://doi.org/10.12989/scs.2021.41.5.697.
- Foroutan, M., Dastjerdi, R.M. and Bahreini, R.S. (2012), "Static analysis of FGM cylinders by a mesh-free method", Steel Compos. Struct., 12(1), 1-11. https://doi.org/10.12989/scs.2012.12.1.001.
- Ghashochi B.H. and Sadr, M.H. (2012), "Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm", Meccanica, 47(3), 719-730. https://doi.org/10.1007/s11012-011-9482-5.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A. and Benrahou, K.H. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/scs.2021.39.1.051.
- Houari, T., Bessaim, A. Houari, M.S.A., Benguediab, M. and Tounsi, A. (2018) "Bending analysis of advanced composite plates using a new quasi 3D plate theory", Steel Compos. Struct., 26(5), 557-572. https://doi.org/10.12989/scs.2018.26.5.557.
- Hwang, G., Kim, D.H. and Kim, M. (2021), "Structure optimization of woven fabric composites for improvement of mechanical properties using a micromechanics model of woven fabric composites and a genetic algorithm", Compos. Adv. Mater., 30(January), 26349833211006110. https://doi.org/10.1177/26349833211006114.
- Hwang, S., Hsu, Y. and Chen, Y. (2014), "A genetic algorithm for the optimization of fiber angles in composite laminates", J. Mech. Sci. Technol., 28(8), 3163-3169. https://doi.org/10.1007/s12206-014-0725-y.
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural Analysis of Laminated Composite Flat Panel under Hygro-Thermo-Mechanical Loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
- Kettaf, F.Z., Beguediab, M., Benguediab, S., Selim, M.M. and Tounsi, A. (2021), "M Hussain Mechanical and thermal buckling analysis of laminated composite plates", Steel Compos. Struct., 40(5), 697-708. https://doi.org/10.12989/scs.2021.40.5.697.
- Luersen, M.A, Steeves, C.A. and Nair, P.B. (2015), "Curved fiber paths optimization of a composite cylindrical shell via Kriging-based approach", J. Compos. Mater., 49(29), 3583-3597. https://doi.org/10.1177/0021998314568168.
- Mahapatra, T., Panda, S. and Kar, V. (2015), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9
- Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2016), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Comput., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119.
- Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606.
- Monte, S.M.C., Infante, V., Madeira, J.F.A. and Moleiro, F. (2017), "Optimization of Fibers Orientation in a Composite Specimen", Mech. Adv. Mater. Struct., 24(5), 410-416. https://doi.org/10.1080/15376494.2016.1191099.
- Naidu, N.V.S. and Sinha, P.K. (2007), "Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 77(4), 475-483. https://doi.org/10.1016/j.compstruct.2005.08.002.
- Navaneethakrishnan, S. and Athijayamani, A. (2017), "Taguchi method for optimization of fabrication parameters with mechanical properties in sisal fibre-vinyl ester composites", Aust. J. Mech. Eng., 15(2), 74-83. https://doi.org/10.1080/14484846.2015.1093258.
- Nikbakt, S., Kamarian, S. and Shakeri, M. (2018), "A Review on optimization of composite structures Part I: Laminated composites", Compos. Struct., 195(July), 158-185. https://doi.org/10.1016/j.compstruct.2018.03.063.
- Pedersen, N.L. (2002), "Topology optimization of laminated plates with prestress", Comput. Struct., 80(7), 559-570. https://doi.org/10.1016/S0045-7949(02)00026-3.
- Qatu, M., Asadi, E. and Wang, W. (2012), "Review of recent literature on static analyses of composite shells: 2000-2010", Open J. Compos. Mater., 2(January), 61. https://doi.org/10.4236/ojcm.2012.23009.
- Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629.
- Tanyildizi, H. (2018), "Prediction of the strength properties of carbon fiber-reinforced lightweight concrete exposed to the high temperature using artificial neural network and support vector machine", Adv. Civ. Eng., 2018(January), e5140610. https://doi.org/10.1155/2018/5140610.
- Topal, U. (2013), "Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates", Steel Compos. Struct., 14(3), 283-293. https://doi.org/10.12989/SCS.2013.14.3.283.
- Topal, U., Dede, T. and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using teaching-learning-based optimization", KSCE J. Civ. Eng., 21(6), 2281-2288. https://doi.org/10.1007/s12205-017-0076-1.
- Topal, U., Dede, T., and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using Teaching-learning-based Optimization", KSCE J. Civ. Eng., 21, 2281-2288. https://doi.org/10.1007/s12205-017-0076-1.
- Trehan, R., Singh, S. and Garg, M. (2015), "Optimization of mechanical properties of polyester hybrid composite laminate using Taguchi methodology - Part 1", Proc. Inst. Mech. Eng. L: J. Mater. Des. Appl., 229(4), 263-273. https://doi.org/10.1177/1464420713509975.
- Vosoughi, A.R., Malekzadeh, P., Topal, U. and Dede, T. (2018), "A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates", Steel Compos. Struct., 28(4), 509-516. https://doi.org/10.12989/scs.2018.28.4.509.