DOI QR코드

DOI QR Code

Optimization of static response of laminated composite plate using nonlinear FEM and ANOVA Taguchi method

  • Pratyush Kumar Sahu (Department of Production Engineering, Veer Surendra University of Technology) ;
  • Trupti Ranjan Mahapatra (Department of Production Engineering, Veer Surendra University of Technology) ;
  • Sanjib Jaypuria (Mechanical Engineering Department, Indian Institute of Technology Kharagpur) ;
  • Debadutta Mishra (Department of Production Engineering, Veer Surendra University of Technology)
  • Received : 2022.03.02
  • Accepted : 2023.09.11
  • Published : 2023.09.25

Abstract

In this paper, a Taguchi-based finite element method (FEM) has been proposed and implemented to assess optimal design parameters for minimum static deflection in laminated composite plate. An orthodox mathematical model (based on higher-order shear deformation plate theory and Green-Lagrange geometrical nonlinearity) has been used to compute the nonlinear central deflection values of laminated composite plates according to Taguchi design of experiment via a self-developed MATLAB computer code. The lay-up scheme, aspect ratio, thickness ratio and the support conditions of the laminated composite plate structure were designated as the governable design parameters. Analysis of variance (ANOVA) is used to investigate the effect of diverse control factors on the nonlinear static responses. Moreover, regression model is developed for predicting the desired responses. The ANOVA revealed that the lay-up scheme alongside the support condition plays vital role in minimizing the central deflection values of laminated composite plate under uniformly distributed load. The conformity test results of Taguchi analysis are also in good agreement with the numerical experimentation results.

Keywords

Acknowledgement

This research is financially supported by SERB, DST, Govt. of India under "Start-up Research Grant (SRG)" scheme (SRG/2019/001860; Sanction order no: SERB/F7721/2019-20, Dated. 17/12/2019) and TEQIP-III, VSSUT, India under "Collaborative Research and Innovation Scheme" grant via. reference no. VSSUT/TEQIP/86/2020 dated 20/01/2020.

References

  1. Abrate, S. (1994), "Optimal design of laminated plates and shells", Compos. Struct., 29(3), 269-286. https://doi.org/10.1016/0263-8223(94)90024-8.
  2. Adali, S., Sadek, I.S., Bruch, J.C. and Sloss, J.M. (2005), "Optimization of composite plates with Piezoelectric stiffener-actuators under in-plane compressive loads", Compos. Struct., Fifth International Conference on Composite Science and Technology, 71(3), 293-301. https://doi.org/10.1016/j.compstruct.2005.09.040.
  3. Ameri, A., Fekrar, A., Bourada, F., Selim, M.M., Benrahou, K.H. and Tounsi, A. (2021), "Hygro-thermo-mechanical bending of laminated composite plates using an innovative computational four variable refined quasi-3D HSDT model", Steel Compos. Struct., 41(1), 31-44. https://doi.org/10.12989/scs.2021.41.1.031.
  4. Ameri, E., Aghdam, M.M. and Shakeri, M. (2012), "Global optimization of laminated cylindrical panels based on fundamental natural frequency", Compos. Struct., 94(9), 2697-2705. https://doi.org/10.1016/j.compstruct.2012.04.005.
  5. Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005.
  6. Belbachir, N., Draiche, K., Bousahla, A.A., Bourada, M. and Tounsi, A. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  7. Chen, J., Tang, Y., Ge, R., An, Q. and Guo, X. (2013), "Reliability design optimization of composite structures based on PSO together with FEA", Chinese J. Aeronaut., 26(April), 343-349. https://doi.org/10.1016/j.cja.2013.02.011.
  8. Cho, H.K. (2009), "Optimization of dynamic behaviors of an orthotropic composite shell subjected to hygrothermal environment", Finite Elem. Anal. Des., 45(11), 852-860. https://doi.org/10.1016/j.finel.2009.06.029.
  9. Correia, I.F.P., Martins, P.G., Soares, C.M.M., Soares, C.A.M. and Herskovits, J. (2006), "Modelling and optimization of laminated adaptive shells of revolution", Compos. Struct., 75(1-4), 49-59. https://doi.org/10.1016/j.compstruct.2006.04.003.
  10. Das, A., Hirwani, C.K., Panda, S.K., Topal, U. and Dede, T. (2018), "Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques", Steel Compos. Struct., 29(6), 749-758. https://doi.org/10.12989/scs.2018.29.6.749.
  11. Dastjerdi, R.M. and Payganeh, G. (2017), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., 25(3), 315-326. https://doi.org/10.12989/scs.2017.25.3.315.
  12. Draiche, K., Selim, M.M., Bousahla, A.A. Tounsi, A., Bourada, F. and Tounsi, A. (2021), "A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT", Steel Compos. Struct., 41(5), 697-711. https://doi.org/10.12989/scs.2021.41.5.697.
  13. Foroutan, M., Dastjerdi, R.M. and Bahreini, R.S. (2012), "Static analysis of FGM cylinders by a mesh-free method", Steel Compos. Struct., 12(1), 1-11. https://doi.org/10.12989/scs.2012.12.1.001.
  14. Ghashochi B.H. and Sadr, M.H. (2012), "Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm", Meccanica, 47(3), 719-730. https://doi.org/10.1007/s11012-011-9482-5.
  15. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A. and Benrahou, K.H. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/scs.2021.39.1.051.
  16. Houari, T., Bessaim, A. Houari, M.S.A., Benguediab, M. and Tounsi, A. (2018) "Bending analysis of advanced composite plates using a new quasi 3D plate theory", Steel Compos. Struct., 26(5), 557-572. https://doi.org/10.12989/scs.2018.26.5.557.
  17. Hwang, G., Kim, D.H. and Kim, M. (2021), "Structure optimization of woven fabric composites for improvement of mechanical properties using a micromechanics model of woven fabric composites and a genetic algorithm", Compos. Adv. Mater., 30(January), 26349833211006110. https://doi.org/10.1177/26349833211006114.
  18. Hwang, S., Hsu, Y. and Chen, Y. (2014), "A genetic algorithm for the optimization of fiber angles in composite laminates", J. Mech. Sci. Technol., 28(8), 3163-3169. https://doi.org/10.1007/s12206-014-0725-y.
  19. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural Analysis of Laminated Composite Flat Panel under Hygro-Thermo-Mechanical Loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
  20. Kettaf, F.Z., Beguediab, M., Benguediab, S., Selim, M.M. and Tounsi, A. (2021), "M Hussain Mechanical and thermal buckling analysis of laminated composite plates", Steel Compos. Struct., 40(5), 697-708. https://doi.org/10.12989/scs.2021.40.5.697.
  21. Luersen, M.A, Steeves, C.A. and Nair, P.B. (2015), "Curved fiber paths optimization of a composite cylindrical shell via Kriging-based approach", J. Compos. Mater., 49(29), 3583-3597. https://doi.org/10.1177/0021998314568168.
  22. Mahapatra, T., Panda, S. and Kar, V. (2015), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9
  23. Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2016), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Comput., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119.
  24. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606.
  25. Monte, S.M.C., Infante, V., Madeira, J.F.A. and Moleiro, F. (2017), "Optimization of Fibers Orientation in a Composite Specimen", Mech. Adv. Mater. Struct., 24(5), 410-416. https://doi.org/10.1080/15376494.2016.1191099.
  26. Naidu, N.V.S. and Sinha, P.K. (2007), "Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 77(4), 475-483. https://doi.org/10.1016/j.compstruct.2005.08.002.
  27. Navaneethakrishnan, S. and Athijayamani, A. (2017), "Taguchi method for optimization of fabrication parameters with mechanical properties in sisal fibre-vinyl ester composites", Aust. J. Mech. Eng., 15(2), 74-83. https://doi.org/10.1080/14484846.2015.1093258.
  28. Nikbakt, S., Kamarian, S. and Shakeri, M. (2018), "A Review on optimization of composite structures Part I: Laminated composites", Compos. Struct., 195(July), 158-185. https://doi.org/10.1016/j.compstruct.2018.03.063.
  29. Pedersen, N.L. (2002), "Topology optimization of laminated plates with prestress", Comput. Struct., 80(7), 559-570. https://doi.org/10.1016/S0045-7949(02)00026-3.
  30. Qatu, M., Asadi, E. and Wang, W. (2012), "Review of recent literature on static analyses of composite shells: 2000-2010", Open J. Compos. Mater., 2(January), 61. https://doi.org/10.4236/ojcm.2012.23009.
  31. Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629.
  32. Tanyildizi, H. (2018), "Prediction of the strength properties of carbon fiber-reinforced lightweight concrete exposed to the high temperature using artificial neural network and support vector machine", Adv. Civ. Eng., 2018(January), e5140610. https://doi.org/10.1155/2018/5140610.
  33. Topal, U. (2013), "Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates", Steel Compos. Struct., 14(3), 283-293. https://doi.org/10.12989/SCS.2013.14.3.283.
  34. Topal, U., Dede, T. and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using teaching-learning-based optimization", KSCE J. Civ. Eng., 21(6), 2281-2288. https://doi.org/10.1007/s12205-017-0076-1.
  35. Topal, U., Dede, T., and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using Teaching-learning-based Optimization", KSCE J. Civ. Eng., 21, 2281-2288. https://doi.org/10.1007/s12205-017-0076-1.
  36. Trehan, R., Singh, S. and Garg, M. (2015), "Optimization of mechanical properties of polyester hybrid composite laminate using Taguchi methodology - Part 1", Proc. Inst. Mech. Eng. L: J. Mater. Des. Appl., 229(4), 263-273. https://doi.org/10.1177/1464420713509975.
  37. Vosoughi, A.R., Malekzadeh, P., Topal, U. and Dede, T. (2018), "A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates", Steel Compos. Struct., 28(4), 509-516. https://doi.org/10.12989/scs.2018.28.4.509.