DOI QR코드

DOI QR Code

영산강 하구에서 부식산이 식물플랑크톤에 미치는 영향

Response of Size-fractionated Phytoplankton to Humic Acids in the Seawater of Yeongsan River Estuary

  • 김세희 (목포해양대학교 해양시스템공학과) ;
  • 신용식 (목포해양대학교 해양시스템공학과)
  • Sehee Kim (Department Ocean System Engineering, Mokpo National Maritime University) ;
  • Yongsik Sin (Department Ocean System Engineering, Mokpo National Maritime University)
  • 투고 : 2023.07.24
  • 심사 : 2023.09.06
  • 발행 : 2023.09.30

초록

Humic substances are refractory organic compounds that are relatively low in biological activity but known to stimulate phytoplankton growth in estuarine and marine environments. The effect of humic substances on phytoplankton growth was investigated in the seawater zone of the Yeongsan River estuary where an episodic anthropogenic freshwater is discharged, affecting its water properties directly. Water samples and data of water properties were collected at three stations (Sts. A-C) along the channel of the seawater zone in February, May, August and November, 2009. The collected water samples were incubated after humic acids (HA) were added in mesocosm experiments. Phytoplankton (chlorophyll-a) were fractionated into net- (> 20 ㎛) and nano-size (< 20 ㎛) to examine the response of phytoplankton according to size. Their response to HA treatment was assessed by repeated measures analysis of variance (RM-ANOVA). The experiments showed that phytoplankton biomass (chlorophyll-a) significantly increased after HA were added at the stations near the sea dike. Especially, nano-sized chlorophyll-a concentrations increased significantly throughout the seasons. This indicates that understanding the behavior of refractory organic matters such as humic substances is required to better manage altered estuarine ecosystems including the Yeongsan River estuary which are affected by episodic discharge of freshwater from sea dikes.

키워드

과제정보

좋은 논문이 될 수 있도록 면밀히 검토해주신 심사위원님들과 현장조사 및 실험에 참여해주신 목포해양대학교 해양환경미생물 연구실 연구원분들께 감사드립니다.

참고문헌

  1. Yoon BB, Le e EJ, Kang TA, Shin YS (2013) Long-te rm change of phytoplankton biomass (chlorophyll-a), environmental factors and freshwater discharge in Youngsan estuary. KJEE - Korean J Ecol Environ 46(2):205-214  https://doi.org/10.11614/KSL.2013.46.2.205
  2. Lee YJ, Jeong BK, Shin YS, Kim SH, Shin KH (2013) Determination of the origin of particulate organic matter at the estuary of Youngsan River using stable isotope ratios (δ13C, δ15N). Korean J Ecol Environ 46(2):175-184  https://doi.org/10.11614/KSL.2013.46.2.175
  3. Adey WH, Loveland K (2007) The input of organic energy. Dynamic Aquaria. Academic Press, Amsterdam, pp 93-100 
  4. Aiken GR, Mcknight DM, Wershaw RL, Maccarthy P (1985) Humic substances in soil, sediment, and water. Soil Sci 142(5):323 
  5. Alvarez-Gongora C, Herrera-Silveira JA (2006) Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone. Mar Pollut Bull 52(1):48-60  https://doi.org/10.1016/j.marpolbul.2005.08.006
  6. Canuel EA, Hardison AK (2016) Sources, ages, and alteration of organic matter in estuaries. Annu Rev Mar Sci 8:409-434  https://doi.org/10.1146/annurev-marine-122414-034058
  7. Carlsson P, Graneli E (1993) Availability of humic bound nitrogen for coastal phytoplankton. Estuar Coast Shelf Sci 36(5):433-447  https://doi.org/10.1006/ecss.1993.1026
  8. Carlsson P, Graneli E, Segatto AZ (1999) Cycling of biologically available nitrogen in riverine humic substances between marine bacteria, a heterotrophic nanoflagellate and a photosynthetic dinoflagellate. Aquat Microb Ecol 18:23-36  https://doi.org/10.3354/ame018023
  9. Duan S, Bianchi TS (2006) Seasonal changes in the abundance and composition of plant pigments in particulate organic carbon in the lower Mississippi and Pearl Rivers. Estuaries Coast 29(3):427-442  https://doi.org/10.1007/BF02784991
  10. Eljarrat E (2012) Methodologies for sample preservation and stabilization. In: Pawliszyn J (ed) Comprehensive sampling and sample preparation. Elsevier, Barcelona, pp 31-49 
  11. Filella M, Buffle J, Parthasarathy N (2005) Humic and fulvic compounds. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science. Elsevier, Geneva, pp 288-298 
  12. Francko DA (1986) Epilimnetic phosphorus cycling: influence of humic materials and iron on coexisting major mechanisms. Can J Fish Aquat Sci 43:302-310  https://doi.org/10.1139/f86-039
  13. Froneman PW, Pakhomov EA, Balarin MG (2004) Sizefractionated phytoplankton biomass, production and biogenic carbon flux in the eastern Atlantic sector of the Southern Ocean in late austral summer 1997-1998. DeepSea Res 51(22-24):2715-2729  https://doi.org/10.1016/j.dsr2.2002.09.001
  14. Hedges JI, Keil RG (1999) Organic geochemical perspectives on estuarine processes: sorption reactions and consequences. Mar Chem 65(1-2):55-65  https://doi.org/10.1016/S0304-4203(99)00010-9
  15. Hein M, Pedersen MF, Sand-Jensen K (1995) Size-dependent nitrogen uptake in micro- and macroalgae. Mar Ecol-Prog Ser 118:247-253  https://doi.org/10.3354/meps118247
  16. Jouenne F, Lefebvre S, Veron B, Lagadeuc Y (2005) Biological and physico-chemical factors controlling short-term variability in phytoplankton primary production and photosynthetic para meters in a macrotidal ecosystem (eastern English Channel). Estuar Coast Shelf S 65(3):421-439  https://doi.org/10.1016/j.ecss.2005.05.023
  17. Lee J, Park J, Shin Y, Lee B, Chang N, Cho J, Kim S (2009) Effect of dissolved organic matter on the growth of algae, Pseudokirchneriella subcapitata, in Korean lakes: the importance of complexation reactions. Ecotoxicol Environ Saf 72(2):335-343  https://doi.org/10.1016/j.ecoenv.2008.01.013
  18. Lipczynska-Kochany E (2018) Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: a review. Chemosphere 202:420-437  https://doi.org/10.1016/j.chemosphere.2018.03.104
  19. McLusky DS, Elliot M (2004) The estuarine ecology: ecology, threats and management. Oxford University Press, New York, 241 p 
  20. Middelburg JJ, Herman PM (2007) Organic matter processing in tidal estuaries. Mar Chem 106:127-147  https://doi.org/10.1016/j.marchem.2006.02.007
  21. Packham RF (1964) Studies of organic color in natural water. Proc Soc Water Treat Exam 13:316-334 
  22. Prakash A, Rashid MA (1968) Influence of humic substances on the growth of marine phytoplankton: Dinoflagellates. Limnol Oceanogr 13(4):598-606  https://doi.org/10.4319/lo.1968.13.4.0598
  23. Prakash A, Rashid MA, Jensen A, Subha Rao DV (1973) Influence of humic substances on the growth of marine phytoplankton: diatoms. Limnol Oceanogr 18(4):516-524  https://doi.org/10.4319/lo.1973.18.4.0516
  24. Ryther JH (1969) Photosynthesis and fish production in the sea: the production of organic matter and its conversion to higher forms of life vary throughout the world ocean. Science 166(3901):72-76  https://doi.org/10.1126/science.166.3901.72
  25. See JH, Bronk DA, Lewitus AJ (2006) Uptake of Spartina-derived humic nitrogen by estuarine phytoplankton in nonaxenic and axenic culture. Limnol Oceanogr 51(5): 2290-2299  https://doi.org/10.4319/lo.2006.51.5.2290
  26. Sin Y, Hyun B, Jeong B, Soh H (2013) Impacts of eutrophic freshwater inputs on water quality and phytoplankton size structure in a te mperate e stuary altered by a se a dike. Mar Environ Res 85:54-63  https://doi.org/10.1016/j.marenvres.2013.01.001
  27. Sin Y, Jeong B (2015) Short-term variations of phytoplankton communities in response to anthropogenic stressors in a highly altered temperate estuary. Estuar Coast Shelf Sci 156:83-91  https://doi.org/10.1016/j.ecss.2014.09.022
  28. Sin Y, Kim S (2022) Effects of humic acids on size and species composition of phytoplankton in a eutrophic temperate estuary. Appl Sci 12(20):10223 
  29. Sin Y, Lee E, Lee Y, Shin K (2015) The river-estuarine continuum of nutrients and phytoplankton communities in an estuary physically divided by a sea dike. Estuar Coast Shelf Sci 163:279-289  https://doi.org/10.1016/j.ecss.2014.12.028
  30. Sin Y, Lee H (2020) Changes in hydrology, water quality, and algal blooms in a freshwater system impounded with engineered structures in a temperate monsoon river estuary. J Hydrol Reg Stud 32:100744
  31. Steinberg CEW (2003) Ecology of humic substances in freshwaters: determinants from geochemistry to ecological niches. Springer, Berlin, 440 p 
  32. Stuermer DH, Harvey GR (1977) The isolation of humic substances and alcohol-soluble organic matter from seawater. Deep-Sea Res 24(3):303-309  https://doi.org/10.1016/S0146-6291(77)80010-6
  33. Thurman EM (1985) Organic geochemistry of natural waters. Springer, Dordrecht, 497 p 
  34. Totti C, Cangini M, Ferrari C, Kraus R, Pompei M, Pugnetti A, Socal G (2005) Phytoplankton size-distribution and community structure in relation to mucilage occurrence in the northern Adriatic Sea. Sci Total Environ 353:204-217  https://doi.org/10.1016/j.scitotenv.2005.09.028
  35. Tranvik LJ, von Wachenfeldt E (2009) Interactions of dissolved organic matter and humic substances. In: Likens EG (ed) Encyclopedia of inland waters. Academic Press, Uppsala, pp 754-760 
  36. Yoon B, Jung Y, Sin Y (2023) Assessing nutrient limitation in Yeongsan River estuary using bioassay experiments. J Mar Sci Eng 11(7):1337