Acknowledgement
This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).
References
- Abbas, S., Banerjee, M. and Momani, S. (2011), "Dynamical analysis of fractional-order modified logistic model", Comput. Mathem. Appl., 62(3), 1098-1104. https://doi.org/10.1016/j.camwa.2011.03.072.
- Agarwal, R. and Karahanna E. (2000), "Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage", MIS Quart., 665-694. https://doi.org/10.2307/3250951.
- Ahmed, E., El-Sayed, A.M.A. and El-Saka, H.A. (2007), "Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models", J. Mathem. Anal. Appl., 325(1), 542-553. https://doi.org/10.1016/j.jmaa.2006.01.087.
- Ahmed, E., Hashish, A. and Rihan, F.A. (2012), "On fractional order cancer model", J. Fract. Calculus Appl, Anal., 3(2), 1-6. https://doi.org/10.1155/2013/816803.
- Al-Shamma, F., Majeed, W.I. and Ali, H.A.K. (2018), "Experimental responses of MWCNTs reinforced cross-ply thin composite shells under transverse impact and thermal loads", J. Eng. Sustain. Develop., 22(3), 34-49. https://doi.org/10.31272/jeasd.2018.3.4.
- Arafa, A.A.M., Rida, S.Z. and Khalil, M. (2013), "The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model", Appl. Mathem. Modelling, 37(4), 2189-2196. https://doi.org/10.1016/j.apm.2012.05.002.
- Arenas, A.J., Gonzalez-Parra, G. and Chen-Charpentier, B.M. (2016), "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order", Mathem. Comput. Simul., 121, 48-63. https://doi.org/10.1155/2017/8273430.
- Arshad, S., Baleanu, D., Huang, J., Tang, Y. and Al Qurashi, M. M. (2016), "Dynamical analysis of fractional order model of immunogenic tumors", Adv. Mech. Eng., 8(7), 1687814016656704.
- Avcar M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Balci, E., Ozturk, I. and Kartal, S. (2019), "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative", Chaos, Solitons Fractals, 123, 43-51. https://doi.org/10.1016/j.chaos.2019.03.032
- Banerjee, S. (2008), "Immunotherapy with interleukin-2: a study based on mathematical modeling", Int. J. Appl. Mathem. Comput. Sci., 18(3), 389-398. https://doi.org/10.2478/v10006-008-0035-6.
- Banerjee, S. and Sarkar R.R. (2008), "Delay-induced model for tumor-immune interaction and control of malignant tumor growth", Bio Syst., 91(1), 268-288. https://doi.org/:10.1016/j.biosystems.2007.10.002.
- Bray, F., Jemal, A., Grey, N., Ferlay, J. and Forman, D. (2012), "Global cancer transitions according to the Human Development Index (2008-2030): A population-based study", Lancet Oncology, 13(8), 790-801. https://doi.org/10.1016/S1470-2045(12)70211-5.
- Chabner, B.A. and Roberts, T.G. (2005), "Chemotherapy and the war on cancer", Nature Rev. Cancer, 5(1), 65-72. https://doi.org/10.1038/nrc1529.
- Chen, W.C. (2008), "Nonlinear dynamics and chaos in a fractional-order financial system", Chaos, Solitons Fractals, 36(5), 1305-1314. https://doi.org/10.1016/j.chaos.2006.07.051.
- Curti, B.D., Ochoa, A.C., Urba, W.J., Alvord, W.G., Kopp, W.C., Powers, G. and Holmlund, J.T. (1996), "Influence of interleukin-2 regimens on circulating populations of lymphocytes after adoptive transfer of anti-CD3-stimulated T cells: results from a phase I trial in cancer patients", J. Immunotherapy Emphasis Tumor Immunology: Official J. Soc. Biological Therapy, 19(4), 296-308. https://doi.org/10.1097/00002371-199607000-00005.
- De Boer, R.J., Hogeweg, P., Dullens, H.F., De Weger, R.A. and Den Otter, W. (1985), "Macrophage T lymphocyte interactions in the anti-tumor immune response a mathematical model", J. Immunology, 134(4), 2748-2758. https://doi.org/10.1016/S0022-5193(05)80142-0.
- De Pillis, L.G. and Radunskaya, A. (2003), "The dynamics of an optimally controlled tumor model: A case study", Mathem. Comput. Modelling, 37(11), 1221-1244. https://doi.org/10.1016/S0895-7177(03)00133.
- de Pillis, L.G., Gu, W. and Radunskaya, A.E. (2006), "Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations", J. Theoretic. Biology, 238(4), 841-862. https://doi:10.1016/j.jtbi.2005.06.037.
- DeLisi, C. and Rescigno, A. (1977), "Immune surveillance and neoplasia-1 a minimal mathematical model", Bull. Mathem. Biology, 39(2), 201-221. https://doi.org/10.1016/S0092-8240(77)80008-6.
- Din, Q. (2017). "Complexity and chaos control in a discrete-time prey-predator model", Commun. Nonlinear Sci. Numer. Simul., 49, 113-134. https://doi.org/10.1016/j.cnsns.2017.01.025.
- Din, Q. and Ishaque, W. (2020), "Bifurcation analysis and chaos control in discrete-time eco-epidemiological models of pelicans at risk in the Salton Sea", Int. J. Dyn. Control, 8(1), 132-148. https://doi.org/10.1007/s40435-019-00508-x.
- Edelstein-Keshet, L. (2005), "Mathematical models in biology", SIAM. https://doi.org/10.1137/1.9780898719147
- Eladdadi, A., Pillis, L.D. and Kim, P. (2018), "Modelling tumour-immune dynamics, disease progression and treatment", Taylor Francis. https://doi.org/10.1080/23737867.2018.1483003.
- Elsadany, A. and Matouk. A. (2015), "Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization", J. Appl. Mathem. Comput., 49(1-2), 269-283. http://dx.doi.org/10.1007%2Fs12190-014-0838-6. https://doi.org/10.1007%2Fs12190-014-0838-6
- El-Sayed, A.M.A., Elsonbaty, A., Elsadany, A.A. and Matouk, A.E. (2016), "Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization", Int. J. Bifurcation Chaos, 26(13), 1650222. https://doi.org/10.1142/S0218127416502229.
- Galach, M. (2003), "Dynamics of the tumor-immune system competition the effect of time delay", Int. J. Appl. Mathem. Comput. Sci., 13, 395-406. https://doi.org/10.1155/DDNS/2006/58463.
- Gonzalez-Parra, G., Arenas, A.J. and Chen-Charpentier, B.M (2014), "A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1)", Mathem. Meth. Appl. Sci., 37(15), 2218-2226. https://doi.org/10.1002/mma.2968.
- Gorenflo, R. and Mainardi, F. (1997), "Fractional calculus", Fractals Fractional Calculus Continuum Mechanics, 223-276. https://doi.org/10.1007/978-3-7091-2664-6.
- Hilfer, R. (2000), "Applications of fractional calculus in physics", World Scientific Singapore. https://doi.org/10.1142/3779
- Huang, C., Cao, J. and Xiao, M. (2016), "Hybrid control on bifurcation for a delayed fractional gene regulatory network." Chaos, Solitons Fractals, 87, 19-29. https://doi.org/10.1007/s11431-018-9376-2.
- Ibraheem, W., Al-Samarraie, S.A. and AL-SAIOR, M.M. (2013), "Vibration control analysis of a smart flexible cantilever beam using smart material", J. Eng., 19(1)
- Itik, M., Salamci, M.U. and Banks, S.P. (2009), "Optimal control of drug therapy in cancer treatment," Nonlinear Anal. Theory, Meth. Appl., 71(12), e1473-e1486. https://doi.org/10.3906/elk1001-411.
- Jun, D., Guang-jun, Z., Yong, X., Hong, Y. and Jue, W. (2014), "Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model", Cognitiveneurodynamics, 8(2), 167-175. https://dx.doi.org/10.1007%2Fs11571-013-9273-x. https://doi.org/10.1007%2Fs11571-013-9273-x
- Karami B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
- Kirschner, D. and Panetta, J.C. (1998), "Modeling immunotherapy of the tumor-immune interaction", J. Mathem. Biology, 37(3), 235-252. https://doi.org/10.1007/s002850050127.
- Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A. and Perelson, A.S. (1994), "Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis", Bull. Mathem. Biology, 56(2), 295-321. https://doi.org/10.1016/S0092-8240(05)80260-5.
- Laskin, N. (2002)", Fractional schrodinger equation", Phys. Rev. E., 66(5), 056108. https://doi.org/10.1103/PhysRevE.66.056108.
- Liao, W., Lin, J.X. and Leonard, W.J. (2011)", IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation", Current Opinion Immunology, 23(5), 598-604. https//doi.org/10.1016/j.coi.2011.08.003.
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
- Marincola, F.M., White, D.E., Wise, A.P. and Rosenberg, S.A. (1995), "Combination therapy with interferon alfa-2a and interleukin-2 for the treatment of metastatic cancer", J. Clinical Oncology, 13(5), 1110-1122. https://doi.org/10.1385/1-59745-011.
- Matouk, A. and Elsadany, A. (2016), "Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model", Nonlinear Dyn., 85(3), 1597-1612. https//doi.org/10.1007/s11071-016-2781-6.
- Matouk, A.E., Elsadany, A.A., Ahmed, E. and Agiza, H.N. (2015), "Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization", Commun. Nonlinear Sci. Numer. Simul., 27(1-3), 153-167. http://dx.doi.org/http://dx.doi.org/10.1016/j.cnsns.2015.03.004.
- Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D. and Feliu-Batlle, V. (2010), "Fractional-order systems and controls: fundamentals and applications", Springer Science Business Media. https//doi.org/:10.1007/978-1-84996-335-0.
- Oldham, K.B. (2010), "Fractional differential equations in electrochemistry", Adv. Eng. Softw. 41(1), 9-12. https//doi.org/10.1016/j.advengsoft.2008.12.012.
- Podlubny, I. (1999), "Fractional differential equations", Mathem. Sci. Eng. Academic Press, 19, https//doi.org/10.12691/ajma-1-1-3.
- Rihan, F.A., Hashish, A., Al-Maskari, F., Hussein, M.S., Ahmed, E., Riaz, M.B. and Yafia, R. (2016), "Dynamics of tumor-immune system with fractional-order", J. Tumor Res., 2(1), 109-115. https://doi.org/10.35248/2684-1258.16.2.109
- Rowlands, M. and Gunnell. D. (2009), "HArrIS r, VATTEN LJ, HOLLy JM, MAr-TIN rM. Circulating insulin-like growth factor peptides and prostate cancer risk: A systematic review and meta-analysis", Int. J. Cancer, 124, 2416-2429. https://doi.org/10.1002/ijc.24202
- Rutter, E.M. and Kuang, Y. (2017), "Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer", Discrete Continuous Dyn. Syst.-B, 22(3),1001. http://dx.doi.org/10.3934/dcdsb.2017050.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. http://doi.org/10.12989/anr.2019.7.4.265.
- Simsek M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Tarasov, V.E. (2008)", Fractional vector calculus and fractional Maxwell's equations", Annal. Phys., 323(11) 2756-2778. https://doi.org/10.1016/j.aop.2008.04.005.
- Tenreiro Machado, J.A., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G. and Galhano, A.F. (2010), "Some applications of fractional calculus in engineering", Mathem. Prob. Eng., https://doi.org/10.1155/2010/639801.
- Taj, M., Khadimallah, M.A., Hussain, M., Rashid, Y., Ishaque, W., Mahmoud, S.R. and Tounsi, A. (2021), "Discretization and bifurcation analysis of tumor immune interaction in fractional form", Adv. Nano Res., 10(4), 359-371. https://doi.org/10.12989/anr.2021.10.4.359.
- Thamareerat, N., Luadsong, A. and Aschariyaphotha, N. (2017), "Stability results of a fractional model for unsteady-state fluid flow problem", Adv. Difference Eq., 1, 74. https://doi.org/10.1186/s13662-017-1116-3.
- Thariat, J., Hannoun-Levi, J.M., Myint, A.S., Vuong, T. and Gerard, J.P. (2013), "Past, present, and future of radiotherapy for the benefit of patients", Nature Rev. Clinical Oncology, 10(1), 52. https://doi.org/10.1038/nrclinonc.2012.203.
- Ucar, E., O zdemir, N. and Altun, E. (2019), "Fractional order model of immune cells influenced by cancer cells", Mathem. Modelling Nat. Phenomena, 14(3), 308. https://doi.org/10.1051/mmnp/2019002.
- Unni, P andSeshaiyer, P. (2019), "Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions", Comput. Mathem. Meth. Medicine, 2019, 1-13. https://doi.org/10.1155/2019/4079298.
- Villasana, M. and Radunskaya, A. (2003), "A delay differential equation model for tumor growth", J. Mathem. Biology, 47(3), 270-294. https://doi.org/10.1007/s00285-003-0211-0.
- Wen, G. (2005), "Criterion to identify Hopf bifurcations in maps of arbitrary dimension", Phys. Rev. E., 72(2), 026201. https://doi.org/10.1103/PhysRevE.72.026201.
- Wen, G., Chen, S. and Jin, Q. (2008), "A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker", J. Sound Vib., 311(1-2), 212-223. https://doi.org/10.1016/j.jsv.2007.09.003.
- Wyld, L., Audisio, R.A. and Poston, G.J. (2015), "The evolution of cancer surgery and future perspectives", Nat. Rev. Clinical Oncology, 12(2), 115. https://doi.org/10.1038/nrclinonc.2014.191.
- Yuste, S.B., Acedo, L. and Lindenberg, K. (2004), "Subdiffusionlimited A+ B→ C reaction-subdiffusion process", Phys. Rev. E. 69(3), 36-126. https://doi.org/10.1103/PhysRevE.69.036126.
- Zhang, J., Nan, J., Du, W., Chu, Y. and Luo, H. (2016), "Dynamic analysis for a fractional-order autonomous chaotic system", Discrete Dyn. Nat. Soc., 2016. https://doi.org/10.1155/2016/8712496.