DOI QR코드

DOI QR Code

Optimal control formulation in the sense of Caputo derivatives: Solution of hereditary properties of inter and intra cells

  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Saima Akram (Department of Mathematics, Govt. College Women University Faisalabad) ;
  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Madeeha Tahir (Department of Mathematics, Govt. College Women University Faisalabad) ;
  • Shabir Ahmad (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mohammed Alsaigh (Faculty of Economics and administration, King Abdulaziz University) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.11.07
  • Accepted : 2023.09.07
  • Published : 2023.09.25

Abstract

This work considered an optimal control formulation in the sense of Caputo derivatives. The optimality of the fractional optimal control problem. The tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. In addiltion, existence and local stability of fixed points are investigated for discrete model. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Our technique likewise allows the advancement of results, such as return time to baseline that are unrealistic with current model solvers.

Keywords

Acknowledgement

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).

References

  1. Abbas, S., Banerjee, M. and Momani, S. (2011), "Dynamical analysis of fractional-order modified logistic model", Comput. Mathem. Appl., 62(3), 1098-1104. https://doi.org/10.1016/j.camwa.2011.03.072.
  2. Agarwal, R. and Karahanna E. (2000), "Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage", MIS Quart., 665-694. https://doi.org/10.2307/3250951.
  3. Ahmed, E., El-Sayed, A.M.A. and El-Saka, H.A. (2007), "Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models", J. Mathem. Anal. Appl., 325(1), 542-553. https://doi.org/10.1016/j.jmaa.2006.01.087.
  4. Ahmed, E., Hashish, A. and Rihan, F.A. (2012), "On fractional order cancer model", J. Fract. Calculus Appl, Anal., 3(2), 1-6. https://doi.org/10.1155/2013/816803.
  5. Al-Shamma, F., Majeed, W.I. and Ali, H.A.K. (2018), "Experimental responses of MWCNTs reinforced cross-ply thin composite shells under transverse impact and thermal loads", J. Eng. Sustain. Develop., 22(3), 34-49. https://doi.org/10.31272/jeasd.2018.3.4.
  6. Arafa, A.A.M., Rida, S.Z. and Khalil, M. (2013), "The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model", Appl. Mathem. Modelling, 37(4), 2189-2196. https://doi.org/10.1016/j.apm.2012.05.002.
  7. Arenas, A.J., Gonzalez-Parra, G. and Chen-Charpentier, B.M. (2016), "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order", Mathem. Comput. Simul., 121, 48-63. https://doi.org/10.1155/2017/8273430.
  8. Arshad, S., Baleanu, D., Huang, J., Tang, Y. and Al Qurashi, M. M. (2016), "Dynamical analysis of fractional order model of immunogenic tumors", Adv. Mech. Eng., 8(7), 1687814016656704.
  9. Avcar M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  10. Balci, E., Ozturk, I. and Kartal, S. (2019), "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative", Chaos, Solitons Fractals, 123, 43-51. https://doi.org/10.1016/j.chaos.2019.03.032
  11. Banerjee, S. (2008), "Immunotherapy with interleukin-2: a study based on mathematical modeling", Int. J. Appl. Mathem. Comput. Sci., 18(3), 389-398. https://doi.org/10.2478/v10006-008-0035-6.
  12. Banerjee, S. and Sarkar R.R. (2008), "Delay-induced model for tumor-immune interaction and control of malignant tumor growth", Bio Syst., 91(1), 268-288. https://doi.org/:10.1016/j.biosystems.2007.10.002.
  13. Bray, F., Jemal, A., Grey, N., Ferlay, J. and Forman, D. (2012), "Global cancer transitions according to the Human Development Index (2008-2030): A population-based study", Lancet Oncology, 13(8), 790-801. https://doi.org/10.1016/S1470-2045(12)70211-5.
  14. Chabner, B.A. and Roberts, T.G. (2005), "Chemotherapy and the war on cancer", Nature Rev. Cancer, 5(1), 65-72. https://doi.org/10.1038/nrc1529.
  15. Chen, W.C. (2008), "Nonlinear dynamics and chaos in a fractional-order financial system", Chaos, Solitons Fractals, 36(5), 1305-1314. https://doi.org/10.1016/j.chaos.2006.07.051.
  16. Curti, B.D., Ochoa, A.C., Urba, W.J., Alvord, W.G., Kopp, W.C., Powers, G. and Holmlund, J.T. (1996), "Influence of interleukin-2 regimens on circulating populations of lymphocytes after adoptive transfer of anti-CD3-stimulated T cells: results from a phase I trial in cancer patients", J. Immunotherapy Emphasis Tumor Immunology: Official J. Soc. Biological Therapy, 19(4), 296-308. https://doi.org/10.1097/00002371-199607000-00005.
  17. De Boer, R.J., Hogeweg, P., Dullens, H.F., De Weger, R.A. and Den Otter, W. (1985), "Macrophage T lymphocyte interactions in the anti-tumor immune response a mathematical model", J. Immunology, 134(4), 2748-2758. https://doi.org/10.1016/S0022-5193(05)80142-0.
  18. De Pillis, L.G. and Radunskaya, A. (2003), "The dynamics of an optimally controlled tumor model: A case study", Mathem. Comput. Modelling, 37(11), 1221-1244. https://doi.org/10.1016/S0895-7177(03)00133.
  19. de Pillis, L.G., Gu, W. and Radunskaya, A.E. (2006), "Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations", J. Theoretic. Biology, 238(4), 841-862. https://doi:10.1016/j.jtbi.2005.06.037.
  20. DeLisi, C. and Rescigno, A. (1977), "Immune surveillance and neoplasia-1 a minimal mathematical model", Bull. Mathem. Biology, 39(2), 201-221. https://doi.org/10.1016/S0092-8240(77)80008-6.
  21. Din, Q. (2017). "Complexity and chaos control in a discrete-time prey-predator model", Commun. Nonlinear Sci. Numer. Simul., 49, 113-134. https://doi.org/10.1016/j.cnsns.2017.01.025.
  22. Din, Q. and Ishaque, W. (2020), "Bifurcation analysis and chaos control in discrete-time eco-epidemiological models of pelicans at risk in the Salton Sea", Int. J. Dyn. Control, 8(1), 132-148. https://doi.org/10.1007/s40435-019-00508-x.
  23. Edelstein-Keshet, L. (2005), "Mathematical models in biology", SIAM. https://doi.org/10.1137/1.9780898719147
  24. Eladdadi, A., Pillis, L.D. and Kim, P. (2018), "Modelling tumour-immune dynamics, disease progression and treatment", Taylor Francis. https://doi.org/10.1080/23737867.2018.1483003.
  25. Elsadany, A. and Matouk. A. (2015), "Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization", J. Appl. Mathem. Comput., 49(1-2), 269-283. http://dx.doi.org/10.1007%2Fs12190-014-0838-6. https://doi.org/10.1007%2Fs12190-014-0838-6
  26. El-Sayed, A.M.A., Elsonbaty, A., Elsadany, A.A. and Matouk, A.E. (2016), "Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization", Int. J. Bifurcation Chaos, 26(13), 1650222. https://doi.org/10.1142/S0218127416502229.
  27. Galach, M. (2003), "Dynamics of the tumor-immune system competition the effect of time delay", Int. J. Appl. Mathem. Comput. Sci., 13, 395-406. https://doi.org/10.1155/DDNS/2006/58463.
  28. Gonzalez-Parra, G., Arenas, A.J. and Chen-Charpentier, B.M (2014), "A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1)", Mathem. Meth. Appl. Sci., 37(15), 2218-2226. https://doi.org/10.1002/mma.2968.
  29. Gorenflo, R. and Mainardi, F. (1997), "Fractional calculus", Fractals Fractional Calculus Continuum Mechanics, 223-276. https://doi.org/10.1007/978-3-7091-2664-6.
  30. Hilfer, R. (2000), "Applications of fractional calculus in physics", World Scientific Singapore. https://doi.org/10.1142/3779
  31. Huang, C., Cao, J. and Xiao, M. (2016), "Hybrid control on bifurcation for a delayed fractional gene regulatory network." Chaos, Solitons Fractals, 87, 19-29. https://doi.org/10.1007/s11431-018-9376-2.
  32. Ibraheem, W., Al-Samarraie, S.A. and AL-SAIOR, M.M. (2013), "Vibration control analysis of a smart flexible cantilever beam using smart material", J. Eng., 19(1)
  33. Itik, M., Salamci, M.U. and Banks, S.P. (2009), "Optimal control of drug therapy in cancer treatment," Nonlinear Anal. Theory, Meth. Appl., 71(12), e1473-e1486. https://doi.org/10.3906/elk1001-411.
  34. Jun, D., Guang-jun, Z., Yong, X., Hong, Y. and Jue, W. (2014), "Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model", Cognitiveneurodynamics, 8(2), 167-175. https://dx.doi.org/10.1007%2Fs11571-013-9273-x. https://doi.org/10.1007%2Fs11571-013-9273-x
  35. Karami B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  36. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  37. Kirschner, D. and Panetta, J.C. (1998), "Modeling immunotherapy of the tumor-immune interaction", J. Mathem. Biology, 37(3), 235-252. https://doi.org/10.1007/s002850050127.
  38. Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A. and Perelson, A.S. (1994), "Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis", Bull. Mathem. Biology, 56(2), 295-321. https://doi.org/10.1016/S0092-8240(05)80260-5.
  39. Laskin, N. (2002)", Fractional schrodinger equation", Phys. Rev. E., 66(5), 056108. https://doi.org/10.1103/PhysRevE.66.056108.
  40. Liao, W., Lin, J.X. and Leonard, W.J. (2011)", IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation", Current Opinion Immunology, 23(5), 598-604. https//doi.org/10.1016/j.coi.2011.08.003.
  41. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  42. Marincola, F.M., White, D.E., Wise, A.P. and Rosenberg, S.A. (1995), "Combination therapy with interferon alfa-2a and interleukin-2 for the treatment of metastatic cancer", J. Clinical Oncology, 13(5), 1110-1122. https://doi.org/10.1385/1-59745-011.
  43. Matouk, A. and Elsadany, A. (2016), "Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model", Nonlinear Dyn., 85(3), 1597-1612. https//doi.org/10.1007/s11071-016-2781-6.
  44. Matouk, A.E., Elsadany, A.A., Ahmed, E. and Agiza, H.N. (2015), "Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization", Commun. Nonlinear Sci. Numer. Simul., 27(1-3), 153-167. http://dx.doi.org/http://dx.doi.org/10.1016/j.cnsns.2015.03.004.
  45. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D. and Feliu-Batlle, V. (2010), "Fractional-order systems and controls: fundamentals and applications", Springer Science Business Media. https//doi.org/:10.1007/978-1-84996-335-0.
  46. Oldham, K.B. (2010), "Fractional differential equations in electrochemistry", Adv. Eng. Softw. 41(1), 9-12. https//doi.org/10.1016/j.advengsoft.2008.12.012.
  47. Podlubny, I. (1999), "Fractional differential equations", Mathem. Sci. Eng. Academic Press, 19, https//doi.org/10.12691/ajma-1-1-3.
  48. Rihan, F.A., Hashish, A., Al-Maskari, F., Hussein, M.S., Ahmed, E., Riaz, M.B. and Yafia, R. (2016), "Dynamics of tumor-immune system with fractional-order", J. Tumor Res., 2(1), 109-115. https://doi.org/10.35248/2684-1258.16.2.109
  49. Rowlands, M. and Gunnell. D. (2009), "HArrIS r, VATTEN LJ, HOLLy JM, MAr-TIN rM. Circulating insulin-like growth factor peptides and prostate cancer risk: A systematic review and meta-analysis", Int. J. Cancer, 124, 2416-2429. https://doi.org/10.1002/ijc.24202
  50. Rutter, E.M. and Kuang, Y. (2017), "Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer", Discrete Continuous Dyn. Syst.-B, 22(3),1001. http://dx.doi.org/10.3934/dcdsb.2017050.
  51. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. http://doi.org/10.12989/anr.2019.7.4.265.
  52. Simsek M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  53. Tarasov, V.E. (2008)", Fractional vector calculus and fractional Maxwell's equations", Annal. Phys., 323(11) 2756-2778. https://doi.org/10.1016/j.aop.2008.04.005.
  54. Tenreiro Machado, J.A., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G. and Galhano, A.F. (2010), "Some applications of fractional calculus in engineering", Mathem. Prob. Eng., https://doi.org/10.1155/2010/639801.
  55. Taj, M., Khadimallah, M.A., Hussain, M., Rashid, Y., Ishaque, W., Mahmoud, S.R. and Tounsi, A. (2021), "Discretization and bifurcation analysis of tumor immune interaction in fractional form", Adv. Nano Res., 10(4), 359-371. https://doi.org/10.12989/anr.2021.10.4.359.
  56. Thamareerat, N., Luadsong, A. and Aschariyaphotha, N. (2017), "Stability results of a fractional model for unsteady-state fluid flow problem", Adv. Difference Eq., 1, 74. https://doi.org/10.1186/s13662-017-1116-3.
  57. Thariat, J., Hannoun-Levi, J.M., Myint, A.S., Vuong, T. and Gerard, J.P. (2013), "Past, present, and future of radiotherapy for the benefit of patients", Nature Rev. Clinical Oncology, 10(1), 52. https://doi.org/10.1038/nrclinonc.2012.203.
  58. Ucar, E., O zdemir, N. and Altun, E. (2019), "Fractional order model of immune cells influenced by cancer cells", Mathem. Modelling Nat. Phenomena, 14(3), 308. https://doi.org/10.1051/mmnp/2019002.
  59. Unni, P andSeshaiyer, P. (2019), "Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions", Comput. Mathem. Meth. Medicine, 2019, 1-13. https://doi.org/10.1155/2019/4079298.
  60. Villasana, M. and Radunskaya, A. (2003), "A delay differential equation model for tumor growth", J. Mathem. Biology, 47(3), 270-294. https://doi.org/10.1007/s00285-003-0211-0.
  61. Wen, G. (2005), "Criterion to identify Hopf bifurcations in maps of arbitrary dimension", Phys. Rev. E., 72(2), 026201. https://doi.org/10.1103/PhysRevE.72.026201.
  62. Wen, G., Chen, S. and Jin, Q. (2008), "A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker", J. Sound Vib., 311(1-2), 212-223. https://doi.org/10.1016/j.jsv.2007.09.003.
  63. Wyld, L., Audisio, R.A. and Poston, G.J. (2015), "The evolution of cancer surgery and future perspectives", Nat. Rev. Clinical Oncology, 12(2), 115. https://doi.org/10.1038/nrclinonc.2014.191.
  64. Yuste, S.B., Acedo, L. and Lindenberg, K. (2004), "Subdiffusionlimited A+ B→ C reaction-subdiffusion process", Phys. Rev. E. 69(3), 36-126. https://doi.org/10.1103/PhysRevE.69.036126.
  65. Zhang, J., Nan, J., Du, W., Chu, Y. and Luo, H. (2016), "Dynamic analysis for a fractional-order autonomous chaotic system", Discrete Dyn. Nat. Soc., 2016. https://doi.org/10.1155/2016/8712496.