DOI QR코드

DOI QR Code

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen (School of Urban Construction, Zhejiang Shuren University) ;
  • Abdul Hamid Sheikh (School of Civil, Environmental & Mining Engineering, The University of Adelaide) ;
  • Md. Alhaz Uddin (Department of Civil Engineering, College of Engineering, Jouf University) ;
  • A.B.M. Saiful Islam (Department of Civil & Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University) ;
  • Md. Arifuzzaman (Department of Civil and Environmental Engineering, College of Engineering, King Faisal University)
  • Received : 2022.03.24
  • Accepted : 2023.09.12
  • Published : 2023.09.25

Abstract

Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Keywords

References

  1. Chakrabarti, A., Sheikh, A. H., Griffith, M. and Oehlers, D.J. (2012a), "Analysis of composite beams with longitudinal and transverse partial interactions using higher order beam theory", Int. J. Mech. Sci., 59(1), 115-125. https://doi.org/10.1016/j.ijmecsci.2012.03.012.
  2. Chakrabarti, A., Sheikh, A.H., Griffith, M. and Oehlers, D.J. (2012b), "Analysis of composite beams with partial shear interactions using a higher order beam theory", Eng. Struct., 36(Mar.), 283-291. https://doi.org/10.1016/j.engstruct.2011.12.019.
  3. Chakrabarti, A., Sheikh, A.H., Griffith, M. and Oehlers, D.J. (2013), "Dynamic response of composite beams with partial shear interaction using a higher-order beam theory", J. Struct. Eng., 139(1), 47-56. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000603.
  4. El-Sisi, A., Alsharari, F., Salim, H., Elawadi, A. and Hassanin, A. (2023), "Efficient beam element model for analysis of composite beam with partial shear connectivity", Compos. Struct., 303, 116262. https://doi.org/10.1016/j.compstruct.2022.116262.
  5. Erkmen, R.E. and Bradford, M.A. (2009), "Nonlinear elastic analysis of composite beams curved in-plan", Eng. Struct., 31(7), 1613-1624. https://doi.org/10.1016/j.engstruct.2009.02.016.
  6. Faella, C., Martinelli, E. and Nigro, E. (2002), "Steel and concrete composite beams with flexible shear connection: "exact" analytical expression of the stiffness matrix and applications", Comput. Struct.., 80(11), 1001-1009. doi:https://doi.org/10.1016/S0045-7949(02)00038-X.
  7. Fahimi, P., Eskandari, A. H., Baghani, M. and Taheri, A. (2019), "A semi-analytical solution for bending response of SMA composite beams considering SMA asymmetric behavior", Compos. Part B: Eng., 163, 622-633. doi:https://doi.org/10.1016/j.compositesb.2019.01.019.
  8. Foda, M.A. (2013), "Steady state vibration analysis and mitigation of single-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 71, 38-46. https://doi.org/10.1016/j.commatsci.2013.01.015.
  9. Ghannadpour, S.A.M. and Rashidi, F. (2021), "A semi-analytical study on effects of geometric imperfection and curved fiber paths on nonlinear response of compression-loaded laminates", Steel Compos. Struct., 40(4), 621-632.
  10. Girhammar, U.A. (2008), "Composite beam-columns with interlayer slip-Approximate analysis", Int. J. Mech. Sci., 50(12), 1636-1649. doi:https://doi.org/10.1016/j.ijmecsci.2008.09.003.
  11. Hassanin, A.I., Shabaan, H.F. and Elsheikh, A.I. (2021), "Cyclic loading behavior on strengthened composite beams using external post-tensioning tendons (experimental study)", Structures, 29, 1119-1136. doi:https://doi.org/10.1016/j.istruc.2020.12.017.
  12. Hjiaj, M., Battini, J.-M. and Huy Nguyen, Q. (2012), "Large displacement analysis of shear deformable composite beams with interlayer slips", Int. J. Non-Linear Mech., 47(8), 895-904. https://doi.org/10.1016/j.ijnonlinmec.2012.05.001.
  13. Hohe, J. and Becker, W. (2003), "Geometrically nonlinear stress-strain behavior of hyperelastic solid foams", Comput. Mater. Sci., 28(3), 443-453. doi:https://doi.org/10.1016/j.commatsci.2003.08.005.
  14. Kahya, V. (2016), "Buckling analysis of laminated composite and sandwich beams by the finite element method", Compos. Part B: Eng., 91, 126-134. doi:https://doi.org/10.1016/j.compositesb.2016.01.031.
  15. Kefal, A., Hasim, K.A. and Yildiz, M. (2019), "A novel isogeometric beam element based on mixed form of refined zigzag theory for thick sandwich and multilayered composite beams", Compos. Part B: Eng., 167, 100-121. doi:https://doi.org/10.1016/j.compositesb.2018.11.102.
  16. Liang, J.F., Zhang, L.F., Yang, Y.H. and Wei, L. (2021), "Flexural behavior of partially prefabricated partially encased composite beams", Steel Compos. Struct., 38(6), 705-716.
  17. Loh, H.Y., Uy, B. and Bradford, M.A. (2004), "The effects of partial shear connection in the hogging moment regions of composite beams: Part I-Experimental study", J. Construct. Steel Res., 60(6), 897-919. doi:https://doi.org/10.1016/j.jcsr.2003.10.007.
  18. Madke, R.R., Chakraborty, S. and Chowdhury, R. (2014), "Multiscale approach for the nonlinear behavior of cementitious composite", Comput. Mater. Sci., 93, 29-35. https://doi.org/10.1016/j.commatsci.2014.06.026.
  19. Mirambell, E., Bonilla, J., Bezerra, L.M. and Clero, B. (2021), "Numerical study on the deflections of steel-concrete composite beams with partial interaction", Steel Compos. Struct., 38(1), 67-78.
  20. Nguyen, N.-D., Nguyen, T.-K., Vo, T. P., Nguyen, T.-N. and Lee, S. (2019), "Vibration and buckling behaviours of thin-walled composite and functionally graded sandwich I-beams", Compos. Part B: Eng., 166, 414-427. https://doi.org/10.1016/j.compositesb.2019.02.033.
  21. Phung-Van, P., Nguyen-Thoi, T., Bui-Xuan, T. and Lieu-Xuan, Q. (2015), "A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates", Comput. Mater. Sci., 96, 549-558. https://doi.org/10.1016/j.commatsci.2014.04.043.
  22. Ranzi, G. and Bradford, M. A. (2007), "Direct stiffness analysis of a composite beam-column element with partial interaction", Comput. Struct., 85(15), 1206-1214. https://doi.org/10.1016/j.compstruc.2006.11.031.
  23. Ranzi, G., Dall'Asta, A., Ragni, L. and Zona, A. (2010), "A geometric nonlinear model for composite beams with partial interaction", Eng. Struct., 32(5), 1384-1396. https://doi.org/10.1016/j.engstruct.2010.01.017.
  24. Ranzi, G., Gara, F. and Ansourian, P. (2006), "General method of analysis for composite beams with longitudinal and transverse partial interaction", Comput. Struct., 84(31), 2373-2384. https://doi.org/10.1016/j.compstruc.2006.07.002.
  25. Ranzi, G. and Zona, A. (2007), "A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007.
  26. Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007a), "Analytical Solution of Two-Layer Beam Taking into account Interlayer Slip and Shear Deformation", J. Struct. Eng., 133(6), 886-894. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(886).
  27. Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007b), "Locking-free two-layer Timoshenko beam element with interlayer slip", Finite Element. Anal. Des., 43(9), 705-714. https://doi.org/10.1016/j.finel.2007.03.002.
  28. Shen, Z.-B., Li, X.-F., Sheng, L.-P. and Tang, G.-J. (2012), "Transverse vibration of nanotube-based micro-mass sensor via nonlocal Timoshenko beam theory", Comput. Mater. Sci., 53(1), 340-346. https://doi.org/10.1016/j.commatsci.2011.09.023.
  29. Trinh, L.C., Groh, R.M.J., Zucco, G. and Weaver, P.M. (2020), "A strain-displacement mixed formulation based on the modified couple stress theory for the flexural behaviour of laminated beams", Compos. Part B: Eng., 185, 107740. https://doi.org/10.1016/j.compositesb.2019.107740.
  30. Uddin, M.A., Sheikh, A.H., Bennett, T. and Uy, B. (2017), "Large deformation analysis of two layered composite beams with partial shear interaction using a higher order beam theory", International Journal of Mechanical Sciences, 122, 331-340. https://doi.org/10.1016/j.ijmecsci.2017.01.030
  31. Uddin, M.A., Sheikh, A.H., Brown, D., Bennett, T. and Uy, B. (2018), "Geometrically nonlinear inelastic analysis of steel-concrete composite beams with partial interaction using a higher-order beam theory", Int. J. Non-Linear Mech., 100, 34-47. https://doi.org/10.1016/j.ijnonlinmec.2018.01.002
  32. Uy, B. and Nethercot, D. (2005), "Effects of partial shear connection on the required and available rotations of semi-continuous composite beam systems", Struct. Eng., 83(4), 29-39.
  33. Vidal, P., Giunta, G., Gallimard, L. and Polit, O. (2019), "Modeling of composite and sandwich beams with a generic cross-section using a variable separation method", Compos. Part B: Eng., 165, 648-661. doi:https://doi.org/10.1016/j.compositesb.2019.01.095.
  34. Wen, J., Sheikh, A.H., Uddin, M.A. and Uy, B. (2018), "Analytical model for flexural response of two-layered composite beams with interfacial shear slip using a higher order beam theory", Compos. Struct., 184, 789-799. https://doi.org/10.1016/j.compstruct.2017.10.023
  35. Xing, Y., Zhao, Y., Guo, Q., Jiao, J.-f., Chen, Q.-w. and Fu, B.-z. (2021), "Static behavior of bolt connected steel-concrete composite beam without post-cast zone", Steel Compos. Struct., 38(4), 365-380. https://doi.org/10.12989/scs.2021.38.4.365.
  36. Xu, R. and Wu, Y. (2007), "Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory", Int. J. Mech. Sci., 49(10), 1139-1155. https://doi.org/10.1016/j.ijmecsci.2007.02.006.
  37. Yan, J.-B., Dong, X. and Wang, T. (2021), "Behaviors of novel sandwich composite beams with normal weight concrete", Steel Compos. Struct., 38(5), 599-615. https://doi.org/10.12989/SCS.2021.38.5.599
  38. Zidour, M., Benrahou, K. H., Semmah, A., Naceri, M., Belhadj, H. A., Bakhti, K. and Tounsi, A. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Comput. Mater. Sci., 51(1), 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021.