DOI QR코드

DOI QR Code

Development of Recombinase Polymerase Amplification Combined with Lateral Flow Strips for Rapid Detection of Cowpea Mild Mottle Virus

  • Xinyang Wu (College of Life Sciences, China Jiliang University) ;
  • Shuting Chen (College of Life Sciences, China Jiliang University) ;
  • Zixin Zhang (College of Life Sciences, China Jiliang University) ;
  • Yihan Zhang (College of Life Sciences, China Jiliang University) ;
  • Pingmei Li (College of Life Sciences, China Jiliang University) ;
  • Xinyi Chen (College of Life Sciences, China Jiliang University) ;
  • Miaomiao Liu (College of Life Sciences, China Jiliang University) ;
  • Qian Lu (College of Life Sciences, China Jiliang University) ;
  • Zhongyi Li (College of Life Sciences, China Jiliang University) ;
  • Zhongyan Wei (State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University) ;
  • Pei Xu (College of Life Sciences, China Jiliang University)
  • Received : 2023.03.02
  • Accepted : 2023.09.10
  • Published : 2023.10.01

Abstract

Cowpea mild mottle virus (CPMMV) is a global plant virus that poses a threat to the production and quality of legume crops. Early and accurate diagnosis is essential for effective managing CPMMV outbreaks. With the advancement in isothermal recombinase polymerase amplification and lateral flow strips technologies, more rapid and sensitive methods have become available for detecting this pathogen. In this study, we have developed a reverse transcription recombinase polymerase amplification combined with lateral flow strips (RT-RPA-LFS) method for the detection of CPMMV, specifically targeting the CPMMV coat protein (CP) gene. The RT-RPA-LFS assay only requires 20 min at 40℃ and demonstrates high specificity. Its detection limit was 10 copies/µl, which is approximately up to 100 times more sensitive than RT-PCR on agarose gel electrophoresis. The developed RT-RPA-LFS method offers a rapid, convenient, and sensitive approach for field detection of CPMMV, which contribute to controlling the spread of the virus.

Keywords

Acknowledgement

This work is supported by National Nature Science Foundation of China (32202470), Key Research Program of Zhejiang Province (2021C02041), and State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products (2021DC700024-KF202217).

References

  1. Asano, S., Matsushita, Y., Hirayama, Y. and Naka, T. 2015. Simultaneous detection of Tomato spotted wilt virus, Dahlia mosaic virus and Chrysanthemum stunt viroid by multiplex RT-PCR in dahlias and their distribution in Japanese dahlias. Lett. Appl. Microbiol. 61:113-120. https://doi.org/10.1111/lam.12442
  2. Babu, B., Washburn, B. K., Ertek, T. S., Miller, S. H., Riddle, C. B., Knox, G. W., Ochoa-Corona, F. M., Olson, J., Katircioglu, Y. Z. and Paret, M. L. 2017. A field based detection method for Rose rosette virus using isothermal probe-based reverse transcription-recombinase polymerase amplification assay. J. Virol. Methods 247:81-90. https://doi.org/10.1016/j.jviromet.2017.05.019
  3. Boonham, N., Smith, P., Walsh, K., Tame, J., Morris, J., Spence, N., Bennison, J. and Barker, I. 2002. The detection of Tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR (TaqMan). J. Virol. Methods 101:37-48. https://doi.org/10.1016/S0166-0934(01)00418-9
  4. Boyle, D. S., Lehman, D. A., Lillis, L., Peterson, D., Singhal, M., Armes, N., Parker, M., Piepenburg, O. and Overbaugh, J. 2013. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification. mBio 4:e00135-13.
  5. Brunt, A. A. and Kenten, R. H. 1973. Cowpea mild mottle, a newly recognized virus infecting cowpeas (Vigna unguiculata) in Ghana. Ann. Appl. Biol. 74:67-74. https://doi.org/10.1111/j.1744-7348.1973.tb07723.x
  6. Cao, Y., Yan, D., Wu, X., Chen, Z., Lai, Y., Lv, L., Yan, F., Chen, J., Zheng, H. and Song, X. 2020. Rapid and visual detection of milk vetch dwarf virus using recombinase polymerase amplification combined with lateral flow strips. Virol. J. 17:102.
  7. Fukuta, S., Ohishi, K., Yoshida, K., Mizukami, Y., Ishida, A. and Kanbe, M. 2004. Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum. J. Virol. Methods 121:49-55. https://doi.org/10.1016/j.jviromet.2004.05.016
  8. Griep, R. A., Prins, M., van Twisk, C., Keller, H. J., Kerschbaumer, R. J., Kormelink, R., Goldbach, R. W. and Schots, A. 2000. Application of phage display in selecting tomato spotted wilt virus-specific single-chain antibodies (scFvs) for sensitive diagnosis in ELISA. Phytopathology 90:183-190. https://doi.org/10.1094/PHYTO.2000.90.2.183
  9. Hagen, C., Frizzi, A., Kao, J., Jia, L., Huang, M., Zhang, Y. and Huang, S. 2011. Using small RNA sequences to diagnose, sequence, and investigate the infectivity characteristics of vegetable-infecting viruses. Arch. Virol. 156:1209-1216. https://doi.org/10.1007/s00705-011-0979-y
  10. Huguenot, C., van den Dobbelsteen, G., de Haan, P., Wagemakers, C. A., Drost, G. A., Osterhaus, A. D. and Peters, D. 1990. Detection of tomato spotted wilt virus using monoclonal antibodies and riboprobes. Arch. Virol. 110:47-62. https://doi.org/10.1007/BF01310702
  11. Jiao, Y., Jiang, J., An, M., Xia, Z. and Wu, Y. 2019a. Recombinase polymerase amplification assay for rapid detection of maize chlorotic mottle virus in maize. Arch. Virol. 164:2581-2584. https://doi.org/10.1007/s00705-019-04361-3
  12. Jiao, Y., Jiang, J., Wu, Y. and Xia, Z. 2019b. Rapid detection of Cucumber green mottle mosaic virus in watermelon through a recombinase polymerase amplification assay. J. Virol. Methods 270:146-149. https://doi.org/10.1016/j.jviromet.2019.05.008
  13. Jiao, Y., Xu, C., Li, J., Gu, Y., Xia, C., Xie, Q., Xie, Y., An, M., Xia, Z. and Wu, Y. 2020. Characterization and a RT-RPA assay for rapid detection of Chilli Veinal mottle virus (ChiVMV) in tobacco. Virol. J. 17:33.
  14. Kim, N.-Y., Lee, H.-J. and Jeong, R.-D. 2019. A portable detection assay for Apple stem pitting virus using reverse transcription-recombinase polymerase amplification. J. Virol. Methods 274:113747.
  15. Kim, N.-Y., Oh, J., Lee, S.-H., Kim, H., Moon, J. S. and Jeong, R.-D. 2018. Rapid and specific detection of Apple stem grooving virus by reverse transcription-recombinase polymerase amplification. Plant Pathol. J. 4:575-579. https://doi.org/10.5423/PPJ.NT.06.2018.0108
  16. Liu, H., Wu, K., Wu, W., Mi, W., Hao, X. and Wu, Y. 2019. A multiplex reverse transcription PCR assay for simultaneous detection of six main RNA viruses in tomato plants. J. Virol. Methods 265:53-58. https://doi.org/10.1016/j.jviromet.2018.12.011
  17. Mandrile, L., Rotunno, S., Miozzi, L., Vaira, A. M., Giovannozzi, A. M., Rossi, A. M. and Noris, E. 2019. Nondestructive raman spectroscopy as a tool for early detection and discrimination of the infection of tomato plants by two economically important viruses. Anal. Chem. 91:9025-9031. https://doi.org/10.1021/acs.analchem.9b01323
  18. Mortimer-Jones, S. M., Jones, M. G. K., Jones, R. A. C., Thomson, G. and Dwyer, G. I. 2009. A single tube, quantitative real-time RT-PCR assay that detects four potato viruses simultaneously. J. Virol. Methods 161:289-296. https://doi.org/10.1016/j.jviromet.2009.06.027
  19. Nemes, K. and Salanki, K. 2020. A multiplex RT-PCR assay for the simultaneous detection of prevalent viruses infecting pepper (Capsicum annuum L.). J. Virol. Methods 278:113838.
  20. Oliver, J. E. and Whitfield, A. E. 2016. The genus tospovirus: emerging bunyaviruses that threaten food security. Annu. Rev. Virol. 3:101-124. https://doi.org/10.1146/annurev-virology-100114-055036
  21. Piepenburg, O., Williams, C. H., Stemple, D. L. and Armes, N. A. 2006. DNA detection using recombination proteins. PLoS Biol. 4:e204.
  22. Roberts, C. A., Dietzgen, R. G., Heelan, L. A. and Maclean, D. J. 2000. Real-time RT-PCR fluorescent detection of tomato spotted wilt virus. J. Virol. Methods 88:1-8. https://doi.org/10.1016/S0166-0934(00)00156-7
  23. Tantiwanich, Y., Chiemsombat, P., Naidu, R. A. and Adkins, S. 2018. Integrating local lesion assays with conventional RT-PCR for detection of interspecies tospovirus reassortants and mixed tospovirus infections. Plant Dis. 102:715-719. https://doi.org/10.1094/PDIS-09-17-1450-SR
  24. Wei, Z., Mao, C., Jiang, C., Zhang, H., Chen, J. and Sun, Z. 2021. Identification of a new genetic clade of Cowpea mild mottle virus and characterization of its interaction with Soybean mosaic virus in co-infected soybean. Front. Microbiol. 12:650773.
  25. Wu, H., Zhao, P., Yang, X., Li, J., Zhang, J., Zhang, X., Zeng, Z., Dong, J., Gao, S. and Lu, C. 2020. A recombinase polymerase amplification and lateral flow strip combined method that detects Salmonella enterica serotype Typhimurium with no worry of primer-dependent artifacts. Front. Microbiol. 11:1015.
  26. Wu, X., Chen, C., Xiao, X. and Deng, M. J. 2016. Development of reverse transcription thermostable helicase-dependent DNA amplification for the detection of Tomato spotted wilt virus. J. AOAC Int. 99:1596-1599. https://doi.org/10.5740/jaoacint.16-0132
  27. Yang, X., Zhao, P., Dong, Y., Shen, X., Shen, H., Li, J., Jiang, G., Wang, W., Dai, H., Dong, J., Gao, S. and Si, X. 2020. An improved recombinase polymerase amplification assay for visual detection of Vibrio parahaemolyticus with lateral flow strips. J. Food Sci. 85:1834-1844. https://doi.org/10.1111/1750-3841.15105
  28. Zanardo, L. G., Silva, F. N., Lima, A. T. M., Milanesi, D. F., Castilho-Urquiza, G. P., Almeida, A. M. R., Zerbini, F. M. and Carvalho, C. M. 2014. Molecular variability of cowpea mild mottle virus infecting soybean in Brazil. Arch. Virol. 159:727-737. https://doi.org/10.1007/s00705-013-1879-0