과제정보
이 연구는 2020년도 한국연구재단 연구비 지원에 의한 결과의 일부임 (과제번호: 2020R1C1C1013021)
참고문헌
- Aikoh, T., Homma, R., & Abe, Y. (2023). Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation. Urban Forestry & Urban Greening, 80, 127845.
- Burr, A., Schaeg, N., & Hall, D. M. (2018). Assessing residential front yards using Google Street View and geospatial video: A virtual survey approach for urban pollinator conservation. Applied Geography, 92, 12-20. https://doi.org/10.1016/j.apgeog.2018.01.010
- Byun, M.-R., & Seo, U. (2011). How to measure daytime population in urban streets?: Case of Seoul pedestrian flow survey. Survey Research, 12(2), 27-50.
- Chen, F.-C., Subedi, A., Jahanshahi, M. R., Johnson, D. R., & Delp, E. J. (2022a). Deep learning-based building attribute estimation from Google Street View images for flood risk assessment using feature fusion and task relation encoding. Journal of Computing in Civil Engineering, 36(6), 04022031.
- Chen, L., Chen, C., Ewing, R., McKnight, C. E., Srinivasan, R., & Roe, M. (2013). Safety countermeasures and crash reduction in New York City-Experience and lessons learned. Accident Analysis & Prevention, 50, 312-322. https://doi.org/10.1016/j.aap.2012.05.009
- Chen, L., Lu, Y., Ye, Y., Xiao, Y., & Yang, L. (2022b). Examining the association between the built environment and pedestrian volume using street view images. Cities, 127, 103734.
- City of Seoul. (n.d.). CCTV floating population data collection in Bukchon, Seoul, Seoul open data plaza Homepage. Retrieved August 21, 2023 from http://data.seoul.go.kr/dataList/OA-12838/A/1/datasetView.do
- Deng, M., Yang, W., Chen, C., & Liu, C. (2022). Exploring associations between streetscape factors and crime behaviors using Google Street View images. Frontiers of Computer Science, 16(4), 164316.
- Ewing, R., & Cervero, R. (2010). Travel and the built environment: a meta-analysis. Journal of the American Planning Association, 76(3), 265-294. https://doi.org/10.1080/01944361003766766
- Ewing, R., Hajrasouliha, A., Neckerman, K. M., Purciel-Hill, M., & Greene, W. (2016). Streetscape features related to pedestrian activity. Journal of Planning Education and Research, 36(1), 5-15. https://doi.org/10.1177/0739456X15591585
- Gao, G., Ye, X., Li, S., Huang, X., Ning, H., Retchless, D., & Li, Z. (2023). Exploring flood mitigation governance by estimating first-floor elevation via deep learning and google street view in coastal Texas. Environment and Planning B: Urban Analytics and City Science, 23998083231175681.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.
- Helbich, M., Yao, Y., Liu, Y., Zhang, J., Liu, P., & Wang, R. (2019). Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environment International, 126, 107-117. https://doi.org/10.1016/j.envint.2019.02.013
- Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., & Qu, R. (2019). A survey of deep learning-based object detection. IEEE Access, 7, 128837-128868. https://doi.org/10.1109/ACCESS.2019.2939201
- Kang, B. (2019). Identifying street design elements effective in reducing vehicle-to-pedestrian collisions at intersections in New York City. Accident Analysis and Prevention, 122: 308-317. https://doi.org/10.1016/j.aap.2018.10.019
- Kang, J., Korner, M., Wang, Y., Taubenbock, H., & Zhu, X. X. (2018). Building instance classification using street view images. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 44-59. https://doi.org/10.1016/j.isprsjprs.2018.02.006
- Ki, D., & Lee, S. (2021). Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landscape and Urban Planning, 205, 103920.
- Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing.
- New York City. (n.d.). Bi-annual pedestrian counts, NYC OpenData. Retrieved March 25, 2020 from https://data.cityofnewyork.us/Transportation/Bi-Annual-Pedestrian-Counts/2de2-6x2h
- Ozbay, K., Bartin, B., Yang, H., Walla, R., & Williams, R. (2010). Automated Pedestrian Counter: Final Report, February 2010.
- Park, K., & Lee, S. (2018). Application and Validation of a Deep Learning Model to Predict the Walking Satisfaction on Street Level. Journal of the Urban Design Institute of Korea, 19(6), 19-34.
- Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems.
- Retting, R. A., Ferguson, S. A., & McCartt, A. T. (2003). A review of evidence-based traffic engineering measures designed to reduce pedestrian-motor vehicle crashes. American Journal of Public Health, 93(9), 1456-1463. https://doi.org/10.2105/AJPH.93.9.1456
- Ryus, P., Ferguson, E., Laustsen, K. M., Schneider, R. J., Proulx, F. R., Hull, T., & Miranda-Moreno, L. (2014). Guidebook on Pedestrian and Bicycle Volume Data Collection.
- Wang, R., Liu, Y., Lu, Y., Zhang, J., Liu, P., Yao, Y., & Grekousis, G. (2019). Perceptions of built environment and health outcomes for older Chinese in Beijing: A big data approach with street view images and deep learning technique. Computers, Environment and Urban Systems, 78, 101386.
- Wang, X., Liono, J., McIntosh, W., & Salim, F. D. (2017). Predicting the city foot traffic with pedestrian sensor data. Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services.
- Yue, H., Xie, H., Liu, L., & Chen, J. (2022). Detecting people on the street and the streetscape physical environment from Baidu street view images and their effects on community-level street crime in a Chinese city. ISPRS International Journal of Geo-Information, 11(3), 151.
- Yin, L., Cheng, Q., Wang, Z., & Shao, Z. (2015). 'Big data'for pedestrian volume: Exploring the use of Google Street View images for pedestrian counts. Applied Geography, 63, 337-345.
- Yin, L., & Wang, Z. (2016). Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Applied Geography, 76, 147-153. https://doi.org/10.1016/j.apgeog.2016.09.024
- Zhang, L., Lin, L., Liang, X., & He, K. (2016). Is faster R-CNN doing well for pedestrian detection? European Conference on Computer Vision.
- Zhou, H., He, S., Cai, Y., Wang, M., & Su, S. (2019). Social inequalities in neighborhood visual walkability: Using Street View imagery and deep learning technologies to facilitate healthy city planning. Sustainable Cities and Society, 50, 101605.