DOI QR코드

DOI QR Code

흙막이 가시설 내진설계를 위한 등가정적해석의 유효성 분석

Applicability of Pseudostatic Analysis for the Seismic Design of Temporary Retaining Structures in a Deep Excavation

  • 유상화 (쏠트이엔지) ;
  • 김동찬 (한국건설기술연구원 지반연구본부) ;
  • 김종관 (한국건설기술연구원 지반연구본부) ;
  • 한진태 (한국건설기술연구원 지반연구본부)
  • Yu, Sang-Hwa (SALT eng.) ;
  • Kim, Dong-Chan (Dept. of Geotechnical Eng. Research, Korea Inst. of Civil Eng. and Building Tech.) ;
  • Kim, Jongkwan (Dept. of Geotechnical Engrg. Research, Korea Inst. of Civil Eng. and Building Tech.) ;
  • Han, Jin-Tae (Dept. of Geotechnical Engrg. Research, Korea Inst. of Civil Eng. and Building Tech.)
  • 투고 : 2023.08.11
  • 심사 : 2023.09.15
  • 발행 : 2023.09.30

초록

본 논문은 흙막이 가시설의 내진설계 가이드라인을 작성하기 위한 기초 연구로서, 국내외에서 적용되고 있는 내진설계 기준과 등가정적해석을 위한 동적토압 산정 방법에 대해 문헌연구를 수행하였다. 그리고 2차원 유한차분해석 프로그램인 FLAC 2D를 이용하여 Semirigid pressure 방법, Wood 방법, Mononobe-Okabe 방법에 따라 등가정적해석을 수행하고, 벽체의 모멘트와 지보재 축력에 대한 해석 결과를 동해석 결과와 비교하여 등가정적해석의 적용성을 평가하였다. Semirigid 방법은 0.4%H 이하의 수평 변위가 발생하는 Stiff wall의 모멘트를 가장 합리적으로 예측하였다. 지보재의 축력은 구조물과 흙 사이의 동적인 상호작용을 고려할 수 없어 정확하게 예측하는 것이 어려웠으나, 안전측으로 보수적인 설계를 위한 예비검토에 활용할 수 있을 것으로 판단된다.

A preliminary study is conducted to develop seismic design guidelines for temporary retaining structures in a deep excavation. The study involved a comprehensive literature review of the seismic design standards applied domestically and internationally, as well as various methods to calculate seismic earth pressure for pseudostatic analysis. The FLAC 2D, a two-dimensional finite difference analysis program, was utilized to perform pseudostatic analysis using the Semirigid pressure method, Wood method, and Mononobe-Okabe method. The resulting analysis data for the wall moment and axial force of the strut were compared with the dynamic analysis outcomes to evaluate the applicability of pseudostatic analysis. The Semirigid pressure method predicted the most reasonable moment for Stiff walls experiencing horizontal displacements up to 0.4%H. Predicting the axial force of the strut exactly was challenging because the pseudostatic analysis cannot consider dynamic soil-structure interaction; however, it is deemed available for conservative preliminary review to ensure safety.

키워드

과제정보

본 연구는 한국건설기술연구원의 주요사업인 "인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발(20230105-001)" 과제의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

참고문헌

  1. AASHTO (2017), LRFD Bridge design specificationS, 8th Edition, American Association of State Highway and Transportation Officials, Washington, D.C.
  2. Anderson, D.G., Martin, G.R., Lam, I.P., and Wang, J.N. (2008), Seismic Analysis and Design of Retaining Wall, Buried Structrues, Slopes, and Embankments, NCHRP REPORT 611, Transportation Research Board, National Cooperative Research Program, Washington D.C.
  3. Chin, C.Y., Claudia Kayser, and Michael Pender (2016), "Sesimic Earth Forces Against Embedded Retaining Walls: Insights from Numerical Modelling", Bulletin of the New Zealand Society for Earthquake Engineering, Vol.49, No.2, pp.200-210. https://doi.org/10.5459/bnzsee.49.2.200-210
  4. Deep Excavation LLC (2018), DeepEX software program THEORY MANUAL.
  5. EN 1997-1:2004 (2004), Eurocodes 7 : Geotechnical design - Part 1.
  6. Kevin McManus, Nick Traylen, Phil Clayton, and John Wood (2017), Earthquake Geotechnical Engineering Practice, Module 6: Earthquake Resistant Retaining Wall Design, Minitsry of Business, Innovation & Employment and New Zealand Geotechnical Society.
  7. Matthewson, M.B., Wood, J.H., and Berrill, J.B. (1980), "Sesimic Design of Bridges, Section 9: Earth Retaining Structures", Bulletin of the New Zealand National Society for Earthquake Engineering, Vol.13(3), pp.280-293. https://doi.org/10.5459/bnzsee.13.3.280-293
  8. Ministry of Land, Infrastructure and Transport (2018), Korea Design Standard 17 00 00.
  9. Ministry of Land, Infrastructure and Transport (2022), Korea Design Standard 21 10 00.
  10. Ministry of Land, Infrastructure and Transport (2022), Korea Design Standard 21 30 00.
  11. Mononobe, N. and Matsuo, M. (1929), "On the Determination of Earth Pressures during Earthquake", Proceedings: World Engineering Congress, Japan, Tokyo, Paper No.388, pp.179-187.
  12. Okabe, S. (1926), "General Theory of Earth Pressures", Journal of Japan Society of Civil Engineers, Vol.2, No.1, pp.123-134.
  13. Seed, H.B. and Whitman, R.V. (1970), "Design of Earth Retaining Structures for Dynamic Loads", Proceedings of ASCE Special Conference on Lateral Stresses, Ground Displacement and Earth Retaining Structures, Ithaca, N.Y., pp.103-147.
  14. Standards Australia (2002), Australian/New Zealand Standard 1170.0:2002 Structural design actions Part 0: General principles.
  15. Wood, J.H. (1973), Earthquake Induced Soil Pressure on Structures, Earthquake Engineering Research Laboratory Report EERL 73-05, California Institute of Technology, Pasadena, CA.
  16. Wood, J.H. and Elms, D.G. (1990), "Seismic Design of Gridge Abutements and Retaining Walls", Transit New Zealand, Road Research Unit Bullet in 84, Vol.2.
  17. Yang, EuiKyu, Yu, SangHwa, Kim, Dongchan, Kim, Jongkwan, Ha, Ik-Soo, and Han, JinTae (2022), "Parametric Study for Seismic Design of Temporary Retaining Structure in a Deep Excavation by Dynamic Numerical Analysis", J. of the Korean Geotechnical Society, Vol.38, No.12, pp.45-65. https://doi.org/10.21562/kjs.2022.08.56.3.45
  18. Yang, EuiKyu, Yu, SangHwa, Kim, JongKwan, Kim, DongChan, Kim, SeokJung, and Han, JinTae (2021), "Numerical Evaluation of Dynamic behavior of Retaining Structure in a Deep Excavation", J. of the Korean Geotechnical Society, Vol.37, No.12, pp.89-105.
  19. Yun, Jong Seok, Han, Jin-Tae, Kim, Jong-Kwan, Kim, Dongchan, Kim, Dookie, and Choo, Yun Wook (2022), "Investigation of Seismic Response for Deep Temporary Excavation Retaining Wall Using Dynamic Centrifuge Test", J. of the Korean Geotechnical Society, Vol.38, No.11, pp.119-135.