DOI QR코드

DOI QR Code

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong (Department of Applied Biology, Chonnam National University) ;
  • Tae Ho Ryu (Department of Applied Biology, Chonnam National University) ;
  • Hyo-Jeong Lee (Department of Applied Biology, Chonnam National University) ;
  • Kook-Hyung Kim (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Rae-Dong Jeong (Department of Applied Biology, Chonnam National University)
  • Received : 2023.08.15
  • Accepted : 2023.09.06
  • Published : 2023.10.01

Abstract

Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

Keywords

Acknowledgement

We thank Prof. Jin-Sung Hong (Kangwon National University) for TMV- and CMV-infected leaf samples, Dr. Choong-Min Ryu (Korea Research Institute of Bioscience and Biotechnology) for BTH, and Prof. Pradeep Kachroo (University of Kentucky) for SA-related arabidopsis mutant seeds. This research was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2017R1C1001873).

References

  1. Berrocal-Lobo, M. and Molina, A. 2004. Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant-Microbe Interact. 17:763-770. https://doi.org/10.1094/MPMI.2004.17.7.763
  2. Betsuyaku, S., Katou, S., Takebayashi, Y., Sakakibara, H., Nomura, N. and Fukuda, H. 2018. Salicylic acid and jasmonic scid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana. Plant Cell Physiol. 59:8-16. https://doi.org/10.1093/pcp/pcx181
  3. Bourbousse, C., Vegesna, N., and Law, J. A. 2018. SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115:E12453-E12462. https://doi.org/10.1073/pnas.1810582115
  4. Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F. and Dong, X. 1997. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573-1584.
  5. Camborde, L., Raynaud, C., Dumas, B., and Gaulin, E. 2019. DNA-damaging effectors: new players in the effector arena. Trends Plant Sci. 24:1094-1101. https://doi.org/10.1016/j.tplants.2019.09.012
  6. Cao, H., Bowling, S. A., Gordon, A. S. and and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583-1592. https://doi.org/10.2307/3869945
  7. Chandra-Shekara, A. C., Navarre, D., Kachroo, A., Kang, H.-G., Klessig, D. and Kachroo, P. 2004. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J. 40:647-659. https://doi.org/10.1111/j.1365-313X.2004.02241.x
  8. Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M. and Dong, X. 2000. Roles of salicylic acid, jasmomic acid, and ethylene in CPR-induced resistance in Arabidopsis. Plant Cell 12:2175-2190.
  9. Dai, Y. and Grant, S. 2010. New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin. Cancer Res. 16:376-383. https://doi.org/10.1158/1078-0432.CCR-09-1029
  10. Dempsey, D. A., Pathirana, M. S., Wobbe, K. K. and Klessig, D. F. 1997. Identification of an Arabidopsis locus required for resistance to turnip crinkle virus. Plant J. 11:301-311. https://doi.org/10.1046/j.1365-313X.1997.11020301.x
  11. Dempsey, D. A., Wobbe, K. K. and Klessig, D. F. 1993. Resistance and susceptible responses of Arabidopsis thaliana to turnip crinkle virus. Phytopathology 83:1021-1029. https://doi.org/10.1094/Phyto-83-1021
  12. Donze, T., Qu, F., Twigg, P. and Morris, T. J. 2014. Turnip crinkle virus coat protein inhibits the basal immune response to virus invasion in Arabidopsis by binding to the NAC transcription factor TIP. Virology 449:207-214. https://doi.org/10.1016/j.virol.2013.11.018
  13. Durrant, W. E., Wang, S. and Dong, X. 2007. Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc. Natl. Acad. Sci. U. S. A. 104:4223-4227. https://doi.org/10.1073/pnas.0609357104
  14. Gao, X. and He, P. 2013. Nuclear dynamics of Arabidopsis calcium-dependent protein kinases in effector-triggered immunity. Plant Signal. Behavior 8:e23868.
  15. Gibson, B. A. and Kraus, W. L. 2012. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13:411-424. https://doi.org/10.1038/nrm3376
  16. Hu, Y., Dong, Q. and Yu, D. 2012. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci. 185:288-297. https://doi.org/10.1016/j.plantsci.2011.12.003
  17. Jeong, R.-D., Chandra-Shekara, A., Kachroo, A., Klessig, D. F. and Kachroo, P. 2008. HRT-mediated hypersensitive response and resistance to Turnip crinkle virus in Arabidopsis does not require the function of TIP, the presumed guardee protein. Mol. Plant-Microbe Interact. 21:1316-1324. https://doi.org/10.1094/MPMI-21-10-1316
  18. Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324:89-91. https://doi.org/10.1126/science.1170025
  19. Kachroo, P., Yoshioka, K., Shah, J., Dooner, H. K. and Klessig, D. F. 2000. Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12:677-690. https://doi.org/10.1105/tpc.12.5.677
  20. Kovalchuk, I., Kovalchuk, O., Kalck, V., Boyko, V., Filkowski, J., Heinlein, M. and Hohn, B. 2003. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423:760-762. https://doi.org/10.1038/nature01683
  21. Li, T., Huang, Y., Xu, Z.-S., Wang, F. and Xiong, A.-S. 2019. Salicylic acid-induced differential resistance to the tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol. 19:173.
  22. Lowe, J., Shatz, M., Resnick, M. A. and Menendez, D. 2013. Modulation of immune responses by the tumor suppressor p53. BioDiscovery 8:2.
  23. Lucht, J. M., Mauch-Mani, B., Steiner, H.-Y., Metraux, J.-P., Ryals, J. and Hohn, B. 2002. Pathogen stress increases somatic recombination frequency in Arabidopsis. Nat. Genet. 30:311-314. https://doi.org/10.1038/ng846
  24. Meek, D. W. 2009. Tumour suppression by p53: a role for the DNA damage response? Nat. Rev. Cancer 9:714-723. https://doi.org/10.1038/nrc2716
  25. Menke, M., Chen, I., Angelis, K. J. and Schubert, I. 2001. DNA damage and repair in Arabidopsis thaliana as measured by the comet assay after treatment with different classes of genotoxins. Mutat. Res. 439:87-93. https://doi.org/10.1016/S1383-5718(01)00165-6
  26. Monaghan, J., Xu, F., Gao, M., Zhao, Q., Palma, K., Long, C., Chen, S., Zhang, Y. and Li, X. 2009. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog. 5:e1000526.
  27. Nisa, M.-U., Huang, Y., Benhamed, M. and Raynaud, C. 2019. The plant DNA damage response: signaling pathways leading to growth inhibition and putative role in response to stress conditions. Front. Plant Sci. 10:653.
  28. Ogita, N., Okushima, Y., Tokizawa, M., Yamamoto, Y. Y., Tanaka, M., Seki, M., Makita, Y., Matsui, M., Okamoto-Yoshiyama, K., Sakamoto, T., Kurata, T., Hiruma, K., Saijo, Y., Takahashi, N. and Umeda, M. 2018. Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. Plant J. 94:439-453. https://doi.org/10.1111/tpj.13866
  29. Pan, X., Welti, R. and Wang X. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat. Protoc. 5:986-992. https://doi.org/10.1038/nprot.2010.37
  30. Roitinger, E., Hofer, M., Kocher, T., Pichler, P., Novatchkova, M., Yang, J., Schlogelhofer, P. and Mechtler, K. 2015. Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol. Cell. Proteomics 14:556-571. https://doi.org/10.1074/mcp.M114.040352
  31. Rubner, Y., Wunderlich, R., Ruhle, P.-F., Kulzer, L., Werthmoller, N., Frey, B., Weiss, E.-M., Keilholz, L., Fietkau, R. and Gaipl, U. S. 2012. How does ionizing irradiation contribute to the induction of anti-tumor immunity? Front. Oncol. 2:75.
  32. Song, J. and Bent, A. F. 2014. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLoS Pathog. 10:e1004030.
  33. Song, J., Keppler, B. D., Wise, R. R. and Bent, A. F. 2015. PARP2 is the predominant poly(ADP-ribose) polymerase in Arabidopsis DNA damage and immune responses. PLoS Genet. 11:e1005200.
  34. Song, W., Ma, X., Tan, H. and Zhou, J. 2011. Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiol. Biochem. 49:693-700. https://doi.org/10.1016/j.plaphy.2011.03.018
  35. Soria-Valles, C., Lopez-Soto, A., Osorio, F. G. and Lopez-Otin, C. 2017. Immune and inflammatory responses to DNA damage in cancer and aging. Mech. Ageing Dev. 165:10-16. https://doi.org/10.1016/j.mad.2016.10.004
  36. Ton, J., Van Pelt, J. A., Van Loon, L. C. and Pieterse, C. M. J. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact. 15:27-34. https://doi.org/10.1094/MPMI.2002.15.1.27
  37. Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. 1992. Acquired resistance in Arabidopsis. Plant Cell 4:645-656.
  38. Vijayan, P., Shockey, J., Levesque, C. A., Cook, R. J. and Browse, J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. of Sci. U. S. A. 95:7209-7214. https://doi.org/10.1073/pnas.95.12.7209
  39. Wang, C., El-Shetehy, M., Shine, M. N., Yu, K., Navarre, D., Wendehenne, D., Kachroo, A. and Kachroo, P. 2014. Free radicals mediate systemic acquired resistance. Cell Rep. 7:348-355. https://doi.org/10.1016/j.celrep.2014.03.032
  40. Wang, S., Durrant, W. E., Song, J., Spivey, N. W. and Dong, X. 2010. Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses. Proc. Natl. Acad. Sci. U. S. A. 107:22716-22721. https://doi.org/10.1073/pnas.1005978107
  41. Yalpani, N., Enyedi, A. J., Leon, J. and Raskin, I. 1994. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372-376. https://doi.org/10.1007/BF00201815
  42. Yan, S., Wang, W., Marques, J., Mohan, R., Saleh, A., Durrant, W. E., Song, J. and Dong, X. 2013. Salicylic acid activates DNA damage responses to potentiate plant immunity. Mol. Cell 52:602-610. https://doi.org/10.1016/j.molcel.2013.09.019
  43. Yao, Y., Kathiria, P. and Kovalchuk, I. 2013. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication. Front. Plant Sci. 4:61.
  44. Yoshiyama, K. O., Aoshima, N., Takahashi, N., Sakamoto, T., Hiruma, K., Saijo, Y., Hidema, J., Umeda, M. and Kimura, S. 2020. SUPPRESSOR OF GAMMA RESPONSE 1 acts as a regulator coordinating crosstalk between DNA damage response and immune response in Arabidopsis thaliana. Plant Mol. Biol. 103:321-340. https://doi.org/10.1007/s11103-020-00994-0
  45. Yoshiyama, K. O., Kimura S., Maki H., Britt, A. B. and Umeda M. 2014. The role of SOG1, a plant-specific transcriptional regulator, in the DNA damage response. Plant Signal Behav. 9:e28889.
  46. Zhang, C., Howlader P., Liu, T., Sun X., Jia X., Zhao X., Shen P., Qin, Y., Wang, W. and Yin, H. 2019. Alginate oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana. Carbohydr. Polym. 225:115221.