DOI QR코드

DOI QR Code

Growth of Cucumber and Tomato Seedlings by Different Light Intensities and CO2 Concentrations in Closed-type Plant Production System

밀폐형 식물생산시스템 내 CO2와 광도에 따른 오이 및 토마토 묘의 생육

  • Ji Hye Yun (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Hyeon Woo Jeong (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • So Yeong Hwang (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Jin Yu (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Hee Sung Hwang (Division of Crop Science, Graduate School of Gyeongsang National University) ;
  • Seung Jae Hwang (Division of Horticultural Science, College of Agriculture & Life Science, Gyeongsang National University)
  • 윤지혜 (경상국립대학교 대학원 응용생명과학부) ;
  • 정현우 (경상국립대학교 대학원 응용생명과학부) ;
  • 황소영 (경상국립대학교 대학원 응용생명과학부) ;
  • 유진 (경상국립대학교 대학원 응용생명과학부) ;
  • 황희성 (경상국립대학교 대학원 작물생산과학부 ) ;
  • 황승재 (경상국립대학교 농업생명과학대학 원예과학부)
  • Received : 2023.06.26
  • Accepted : 2023.08.12
  • Published : 2023.10.31

Abstract

This study was conducted to investigate the growth characteristics of cucumber (Cucumis sativus L. 'Joeunbaekdadagi') and tomato (Solanum lycopersicum L. 'Dotaerang Dia') seedlings by light intensities and CO2 concentrations in a closed-type plant production system (CPPS). Cucumber and tomato seeds were sown in 50-cell trays and germinated in CPPS at air temperature 25 ± 1℃ and relative humidity 50 ± 10% for 4 days. After germination, the CO2 concentrations and light intensity treatment were treated at 500 (ambient), 1,000, and 1,500 µmol·mol-1 and 100, 200, and 300 µmol·m-2·s-1 photosynthetic photon flux density (PPFD), respectively. The leaf area of cucumber showed the highest value in CO2 1,500 μmol·mol-1. However, the leaf area of the tomato had no significant difference in CO2 concentrations and light intensities treatments. In cucumber and tomato both seedlings, the growth and quality such as compactness and leaf area rate were increased with the increase of light intensity, and there were highest in 300 µmol·m-2·s-1. The root surface and number of root tips of cucumber and tomato seedlings were significantly increased with the increase in light intensity. In conclusion, the regulation of the CO2 concentrations and light intensity can control the growth and quality of cucumber and tomato seedlings in CPPS, especially, increasing the light intensity can improve more significantly the growth and quality of seedlings.

본 연구는 밀폐형 식물생산 시스템(CPPS)에서 광도와 CO2 농도에 따른 오이와 토마토 묘의 생육을 조사하기 위해 수행되었다. 오이(Cucumis sativus L. 'Joeunbaekdadagi')와 토마토(Solanum lycopersicum L. 'Dotaerang Dia')를 50구 트레이에 파종하여 CPPS에서 25℃, 50% 상대습도에서 4일 동안 발아시켰다. 발아 후 CO2 농도 처리 및 광도는 각각500(무처리구), 1,000, 그리고 1,500µmol·mol-1 와 100, 200, 그리고 300µmol·m-2·s-1로 재배하였다. 오이의 엽면적은 광도보다 CO2 농도 변화에 영향을 받으며 1,500µmol·mol-1 CO2 농도 조건에서 엽면적이 가장 넓었다. 반면에 토마토의 엽면적은 CO2 농도와 광도 변화에 따른 유의미한 차이를 나타내지 않았다. 광도가 증가함에 따라, 오이와 토마토의 생육과 묘소질(충실도와 엽면적비)이 유의적으로 증가하는 경향을 나타냈고, 광도 300µmol·m-2·s-1에서 가장 높았다. 오이와 토마토 묘의 근권 표면적, 근단 수는 광도의 증가에 따라 유의적으로 증가하였다. 결론적으로 CO2 농도와 광도의 조절은 오이와 토마토 묘의 생육과 묘소질을 조절할 수 있으나, CO2 농도보다 광도의 영향을 크게 받았으며, 광도가 증가함에 따라 생육, 묘소질, 그리고 뿌리가 발달하는 경향이 나타났다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 공동연구사업(과제번호: RS-2022-RD010412)의 지원으로 수행되었음.

References

  1. Ahn C.K., Y.W. Choi, B.G. Son, and J.S. Kang 2003, Production of high quality tomato seedlings by CO2 and temperature control in glass house. Hortic Environ Biotechnol 44:182-186. (in Korean)
  2. An S.W., J.H. Bae, H.C. Kim, and Y. Kwack 2021, Production of grafted vegetable seedlings in the republic of Korea: achievements, challenges and perspectives. Hortic Sci Technol 39:547-559. doi:10.7235/HORT.20210049
  3. Atwater D.Z., J.J. James, and E.A. Leger 2015, Seedling root traits strongly influence field survival and performance of a common bunchgrass. Basic Appl Ecol 16:128-140. doi:10.1016/j.baae.2014.12.004
  4. Busso C.A., D.D. Briske, and V. Olalde-Portugal 2001, Root traits associated with nutrient exploitation following defoliation in three coexisting perennial grasses in a semi-arid savanna. Oikos 93:332-342. doi:10.1034/j.1600-0706.2001.930216.x
  5. Choi H.S., and H.T. Cho 2019, Root hairs enhance Arabidopsis seedling survival upon soil disruption. Sci Rep 9:11181. doi:10.1038/s41598-019-47733-0
  6. Fan X.X., Z.G. Xu, X.Y. Liu, C.M. Tang, L.W. Wang, and X.L. Han 2013, Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50-55. doi:10.1016/j.scienta.2013.01.017
  7. Foxx A.J., and A.T. Kramer 2020, Variation in number of root tips influences survival in competition with an invasive grass. J Arid Environ 179:104189.
  8. Hetrick B.A.D. 1991, Mycorrhizas and root architecture. Experientia 47:355-362.
  9. Jang Y., H.J. Lee, C.S. Choi, Y. Um, and S.G. Lee 2014, Growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity and plug cell size under an artificial lighting condition. Protected Hort Plant Fac 23:383-390. (in Korean) doi:10.12791/KSBEC.2014.23.4.383
  10. Jeong B.R., S.J. Hwang, and N.J. Kang 2016, Plug seedling. GSpress, Jinju, Korea, p 11. (in Korean)
  11. Jo H.G., H.W. Jeong, H.R. Lee, S.M. Kwon, H.S. Hwang, and S.J. Hwang 2021, Growth of tomato and pepper grafted plug seedlings under different shading condition during acclimatization after graft-taking. J Bio-Env Con 30:10-18. (in Korean) doi:10.12791/KSBEC.2021.30.1.010
  12. Kozai T., G. Niu, and M. Takagaki 2019, Plant factory: an indoor vertical farming system for efficient quality food production. Academic press, ed 2, Cambridge, USA, pp 4-5.
  13. Kwack Y., S.W. Park, and C. Chun 2014, Growth and development of grafted cucumber transplants as affected by seedling ages of scions and rootstocks and light intensity during their cultivation in a closed production system. Hortic Sci Technol 32:600-606. doi:10.7235/hort.2014.14039
  14. Lee H.J., J.H. Ha, S.G. Kim, H.K. Choi, Z.H. Kim, Y.J. Han, J.I. Kim, Y. Oh, V. Fragoso, K. Shin, T. Hyeon, H. Choi, K.H. Oh, I.T. Baldwin, and C.M. Park 2016a, Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 9:ra106. doi:10.1126/scisignal.aaf6530
  15. Lee J.E., Y.S. Shin, H.W. Do, J.D. Cheung, and Y.H. Kang 2016b, Effect of seedling quality and growth after transplanting of Korean melon nursed under LED light sources and intensity. Protected Hort Plant Fac 25:294-301. (in Korean) doi:10.12791/KSBEC.2016.25.4.294
  16. Lee N., H.Y. Wetzstein, and H.E. Sommer 1985, Effects of quantum flux density on photosynthesis and chloroplast ultrastructure in tissue-cultured plantlets and seedlings of Liquidambar styraciflua L. towards improved acclimatization and field survival. Plant Physiol 78:637-641. doi:10.1104/pp.78.3.637
  17. Lee S.G., J.H. Moon, Y.A. Jang, S.Y. Kim, and K.D. Ko 2009, Change of photosynthesis and cellular tissue under high CO2 concentration and high temperature in radish. Korean J Hortic Sci Technol 27:194-198. (in Korean)
  18. Lee W.S., and S.G. Kim 2012, Development of the rotational smart lighting control system using artificial light for plant factory. J Korea Acad-Ind Coop Soc 13:1474-1479. (in Korean)
  19. Li Q., M. Deng, J. Chen, and R.J. Henny 2009, Effects of light intensity and paclobutrazol on growth and interior performance of Pachira aquatic Aubl. HortScience 44:1291-1295. doi:10.21273/HORTSCI.44.5.1291
  20. Lian S., and A. Tanaka 1967, Behaviour of photosynthetic products associated with growth and grain production in the rice plant. Plant Soil 26:333-347.
  21. Lim J.T., S.Y. Baek, H.H. Jeong, H.K. Hwan, B.S. Kim, H.J. Chung, S.J. Lee, and B.S. Lee 2000, Mathematical models of photosynthetic rate of hydroponically grown cucumber plants as affected by light intensity, air temperature, carbon dioxide and leaf nitrogen content. J Bio-Env Con 9:171-178. (in Korean)
  22. Makino A., and T. Mae 1999, Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40:999-1006. doi:10.1093/oxfordjournals.pcp.a029493
  23. Oh S., I.C. Son, H.W. Seung, and S.C. Koh 2016, Photosynthetic and growth responses of Chinese cabbage to rising atmospheric CO2. Korean J Agric For Meteorol 18:357-365. (in Korean) doi:10.5532/KJAFM.2016.18.4.357
  24. Park S.W., S. An, and Y. Kwack 2020, Changes in transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions in a closed transplant production system. Protected Hort Plant Fac 29:399-405. (in Korean) doi:10.12791/KSBEC.2020.29.4.399
  25. Pinero M.C., F. Houdusse, J.M. Garcia-Mina, M. Garnica, and F.M. del Amor 2014, Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration. Physiol Plant 151:375-389. doi:10.1111/ppl.12119
  26. Poorter H. 1993, Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104:77-97.
  27. Poorter H., and O. Nagel 2000, The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Funct Plant Biol 27:595-607.
  28. Rural Development Administration (RDA) 2012, Analysis standard for research in agriculture science and technology, RDA, Jeonju, Korea, pp 503-504. (in Korean)
  29. Rural Development Administration (RDA) 2018, Climate change response food crop stable production technology, RDA, Jeonju, Korea, pp 15. (in Korean)
  30. Rural Development Administration (RDA) 2020, Tomato, RDA, Jeonju, Korea, pp 11-14. (in Korean)
  31. Rural Development Administration (RDA) 2021, Cucumber, RDA, Jeonju, Korea, pp 9-12. (in Korean)
  32. Salisbury F.B. 1988, Approaching the photosynthetic limits of crop productivity. Exec Intell Rev 15:20-22.
  33. Son K.C., and M.K. Kim 1998, Influences of indoor light, Temperature, absolute humidity, and CO2 concentration on the changes of transpiration and photosynthesis rate of Pachira aquatica and their statistical modeling. J Korean Soc Hortic Sci 39:605-609. (in Korean)
  34. Steinger T., B.A. Roy, and M.L. Stanton 2003, Evolution in stressful environments II: adaptive value and costs of plasticity in response to low light in Sinapis arvensis. J Evol Biol 16:313-323. doi:10.1046/j.1420-9101.2003.00518.x.
  35. Ting L., J. Yuhan, Z. Man, S. Sha, and L. Minzan 2017, Universality of an improved photosynthesis prediction model based on PSO-SVM at all growth stages of tomato. Int J Agric Biol Eng 10:63-73. doi:10.3965/j.ijabe.20171002.2580
  36. Um Y.C., Y.A. Jang, J.G. Lee, S.Y. Kim, S.R. Cheong, S.S. Oh, S.H. Cha, and S.C. Hong 2009, Effects of selective light sources on seedling quality of tomato and cucumber in closed nursery system. J Bio-Env Con 18:370-376. (in Korean)
  37. Wang W.Z., M. Zhang, C.H. Liu, M.Z. Li, and G. Liu 2013, Real-time monitoring of environmental information and modeling of the photosynthetic rate of tomato plants under greenhouse conditions. Appl Eng Agric 29:783-792. doi:10.13031/aea.29.9743
  38. Yamori W., and T. Shikanai 2016, Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81-106. doi:10.1146/annurev-arplant-043015-112002
  39. Zhang C.H., I.J. Chun, Y.C. Park, and I.S. Kim 2003, Effect of timings and light intensities of supplemental red light on the growth characteristics of cucumber and tomato plug seedlings. J Bio-Env Con 12:173-179. (in Korean)