DOI QR코드

DOI QR Code

Changes in Bioactive Compounds Throughout Ripening Stages of Green Pepper (Capsicum annuum L.) Exhibiting Varied Fruit Skin Colors

과피색이 다양한 풋고추 과실의 성숙단계에 따른 생리활성물질 변화

  • Hyo Gil Choi (Department of Horticulture, Kongju National University) ;
  • Jae Yeon Jeong (Department of Horticulture, Kongju National University) ;
  • Jae Myun Lee (Department of Horticulture, Kongju National University) ;
  • Nam Jun Kang (Department of Horticulture, Gyeongsang National University)
  • 최효길 (국립공주대학교 원예학과 ) ;
  • 정재연 (국립공주대학교 원예학과 ) ;
  • 이재면 (국립공주대학교 원예학과 ) ;
  • 강남준 (경상국립대학교 원예과학부 )
  • Received : 2023.08.16
  • Accepted : 2023.10.10
  • Published : 2023.10.31

Abstract

This study aimed to investigate the changes in bioactive compounds across the ripening stages of three pepper cultivars, each characterized by unique skin colors. The samples used in this study consisted of three pepper cultivars distinguished by their skin colors as green, purple, and yellow green at breaker ripening stage. Samples were harvested at each of the four ripening stages, including premature, breaker, turning, and mature, and subjected to analysis for various bioactive compounds, including capsaicin, ascorbic acid, kaempferol, quercetin, and sugars. In all cultivars with varying skin colors, the capsaicin content within green pepper fruits consistently increased as the ripening stages advanced. Ascorbic acid was most abundant during the premature stage of development in purple and green cultivars, subsequently declining as maturation progressed. In the case of the purple cultivar, kaempferol content decreased by approximately 30% at the mature stage, while the green cultivar exhibited a gradual increase in kaempferol content with maturation. Conversely, the kaempferol content of the yellow green cultivar rapidly declined as maturation progressed. Regarding quercetin content, the purple and green cultivars tended to decrease with maturity, while the yellow green cultivar displayed an increasing trend. Furthermore, the accumulation patterns of glucose, fructose, and sucrose, the predominant free sugars in green pepper fruit, demonstrated an inclination to increase as the maturation stage advanced in both purple and green cultivars. In contrast, the yellow green cultivar initially showed an elevation in free sugar content during the immature stage, followed by a minor reduction during maturation and a subsequent rise during the mature stage. Each pepper cultivar, distinguished by its unique skin color, exhibits varying levels of bioactive substances at different ripening stages. Therefore, optimal harvesting and utilization should align with periods when the desired substance content is at its peak.

본 연구는 각기 고유한 과피색을 갖는 3가지 고추 품종의 성숙 단계에 따른 생리활성 화합물의 변화를 조사하기 위한 목적으로 수행되었다. 연구에 사용된 시료는 변색기에 과피색이 보라색, 녹색, 연두색인 3가지 고추 품종이며, 미숙기, 변색기, 최색기, 완숙기로 구분된 성숙 4단계별로 각각의 고추를 수확하여 캡사이신, 아스코르브산, 캠페롤, 퀘르세틴 및 당성분 등의 생리활성 화합물을 분석하였다. 고추 과실의 캡사이신 함량은 다양한 과피색을 가진 모든 품종에서 성숙 단계가 진행됨에 따라 일관되게 증가하였다. 아스코르브산의 함량은 보라색 및 연두색 품종의 발달 초기에 가장 풍부하였고, 성숙이 진행될수록감소하였다. 캠페롤 함량은 보라색 품종의 경우 변색기에 비하여 완숙기에 약30% 감소한 반면에, 녹색 품종에서는 미숙기에서 완숙기까지 점차 증가하였다. 하지만, 연두색 품종의 캠페롤 함량은 성숙이 진행되면서 급격히 감소하였다. 퀘르세틴 함량의 경우 보라색과 녹색 품종에서는 성숙할수록 감소하였지만 연두색 품종은 증가하였다. 풋고추 과실의 주요 유리당인 포도당, 과당, 자당의 축적 양상은 보라색과 녹색 품종에서는 성숙이 진행됨에 따라 증가하는 경향을 보였다. 반면에 연두색 품종에서는 미숙기에서 이미 유리당 함량이 높은 상태였다. 그러나 성숙하는 동안 약간 감소하였다가 성숙기에 다시 증가하였다. 이처럼 고추는 과피색에 따라 성숙 단계별로 축적되어지는 생리활성 화합물의 함량 차이가 크다. 따라서 생리활성 물질을 효율적으로 이용하기 위해서는 목적으로 하는 생리활성 물질 함량이 최고조에 달하는 성숙 단계에서 수확하여 이용해야한다.

Keywords

Acknowledgement

본 연구는 농림식품기술기획평가원 및 스마트팜연구개발사업단의 연구 지원(421001-03)을 받았습니다.

References

  1. Akhtar M., A. Ahmad, T. Masud, and F.H. Wattoo 2018, Phenolic, carotenoid, ascorbic acid contents and their antioxidant activities in bell pepper. Acta Sci Pol Hor Cultus 18:13-21. doi:10.24326/asphc.2019.1.2
  2. Aloni B., L. Karni, G. Deventurero, E. Turhan, and H. Aktas 2008, Changes in ascorbic acid concentration, ascorbate oxidase activity, and apoplastic pH in relation to fruit development in pepper (Capsicum annuum L.) and the occurrence of blossom-end rot. J Hortic Sci Biotechnol 83:100-105. doi:10.1080/14620316.2008.11512353
  3. Aza-Gonzalez C., H.G. Nunez-Palenius, and N. Ochoa-Alejo 2011, Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep 30:695-706. doi:10.1007/s00299-010-0968-8
  4. Bae N.G., Y.J Lee, and J.H. Ha 2013, Determination of capsaicinoids in red pepper powder using ultra high performance liquid chromatography. Anal Sci Technol 26:256-261. (in Korean) doi:10.5806/AST.2013.26.4.256
  5. Beltran E.G., and K. Macklin 1962, On the chemistry of the tomato and tomato products: A review of literature (1945 to 1961). Thomas J Lipton Hoboken NJ.
  6. Byun E.B., W.Y. Park, D.H. Ahn, Y.C. Yoo, C.H. Park, B.S. Jang, W.J. Park, E.H. Byun, and N.Y. Sung 2016, Comparison study of three varieties of red peppers in terms of total polyphenol, total flavonoid contents, and antioxidant activities. J Korean Soc Food Sci Nutr 45:765-770. (in Korean) doi:10.3746/jkfn.2016.45.5.765
  7. Camara B., P. Hugueney, F. Bouvier, M. Kuntz, and R. Moneger 1995, Biochemistry and molecular biology of chromoplast development. J Int Rev Cytol 163:175-247. doi:10.1016/s0074-7696(08)62211-1
  8. Chiang G.H. 1986, HPLC analysis of capsaicins and simultaneous determination of capsaicins and piperine by HPLC-ECD and UV. J Food Sci 51:499-505. doi:10.1111/j.1365-2621.1986.tb11165.x
  9. Cho S.Y., H.W. Kim, M.K. Lee, H.J. Kim, J.B. Kim, J.S. Choe, Y.M. Lee, and H.H. Jang 2020, Antioxidant and antiinflammatory activities in relation to the flavonoids composition of pepper (Capsicum annuum L.). doi:10.3390/antiox9100986
  10. Choi M.H., M.H. Kim, and Y.S. Han 2023,Physicochemical properties and antioxidant antioxidant of colored peppers (Capsicum annuum L.). Food Sci Biotechnol 32:209-219. doi:10.1007/s10068-022-01177-x.
  11. Corradini E., P. Foglia, P. Giansanti, R. Gubbiotti, R. Samperi, and A. Lagana 2011, Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat Prod Res 25:469-495. doi:10.1080/14786419.2010.482054
  12. Davies J.N., and G.E. Hobson 1981, The constituents of tomato fruit the influense of environment, nutrition and genotype. CRC Crit Rev Food Sci Nutr 15:205-280. doi:10.1080/10408398109527317
  13. De Luna S.L., R.E. Ramirez-Garza, and S.O.S. Saldivar 2020, Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. Sci World J 2020:6792069. doi:10.1155/2020/6792069
  14. Dias M.C., D.C.G.A. Pinto, and M.S. Silva 2021, Plant flavonoids: Chemical characteristics and biological activity. Molecules 26:1-16. doi:10.3390/molecules26175377
  15. Diaz J., F. Pomar, A. Bernal, F. Merino 2004, Peroxidases and the metabolism of capsaicin in Capsicum annuum L. Phytochem Rev 3:141-157. doi:10.1023/B:PHYT.0000047801.41574.6e
  16. Egea I., C. Barsan, W. Bian, E. Purgatto, A. Latche, C. Chervin, M. Bouzayen, and J.C. Pech 2010, Chromoplast differentiation: current status and perspectives. Plant Cell Physiol 51:1601-1611. doi:10.1093/pcp/pcq136
  17. Eggink P.M., C. Maliepaard, Y. Tikunov, J.P.W Haanstra, A.G. Bovy, and R.G.F. Visser 2012, A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chem 132:301-310. doi:10.1016/j.foodchem.2011.10.081
  18. Ferreyra R.M., S.Z. Vina, A. Mugridge, and A.R. Chaves 2007, Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Sci Hortic 112:27-32. doi:10.1016/j.scienta.2006.12.001
  19. Fraga C.G., K.D. Croft, D.O. Kennedy, and F.A. TomasBarberan 2019, The effects of polyphenols and other bioactives on human health. Food Funct 10:514-528. doi:10.1039/c8fo01997e
  20. Gnayfeed M.H., H.G. Daood, P.A. Biacs, and C.F. Alcaraz 2001, Content of bioactive compounds in pungent spice red pepper (paprika) as affected by ripening and genotype. J Sci Food Agric 81:1580-1585. doi:10.1002/jsfa.982
  21. Ho L.C. 1979, Regulation of assimilate translocation between leaves and fruit in the tomato. Ann Bot 43:437-338. doi:10.1093/oxfordjournals.aob.a085654
  22. Hornero-Mendez D., R. Gomez-Ladron de Guevara, and M.I. Minguez-Mosquera 2000, Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J Agric Food Chem 48:3857-3864. doi:10.1021/jf991020r
  23. Howard L.R., R.T. Smith, A.B. Wagner, B. Vilialon, and E.E. Burns 1994, Provitamin A and ascorbic acid content of fresh pepper cultivars (Capsicum annuum L.) and processed jalapenos. J Food Sci 59:362-365. doi:10.1111/j.1365-2621.1994.tb06967.x
  24. Howard S.R., S.T. Talcott, C.H. Brenes, and B. Villalon 2000, Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J Agric Food Chem 48:1713-1720. doi:10.1021/jf990916t
  25. Hurtado-Hernandez H., and P.G. Smith 1985, Inheritance of mature fruit color in Capsicum annuum L. J Hered 76:211-213. doi:10.1093/oxfordjournals.jhered.a110070
  26. Hwang J.M., and K.M. Chung 1998, Investigation of distribution and quality of dried red pepper (Capsicum annuum L.) in Andong market. J Korean Soc Hortic Sci 39:702-706. (in Korean) doi:worldveg.tind.io/record/26723
  27. Juca M.M., F.M.S.C. Filho, J.C. de Almeida, D.S. Mesquita, J.R.M. Barriga, K.C.F. Dias, T.M. Barbosa, L.C. Vasconcelos, L.K.A.M. Leal, J.R. Ribeiro, and S.M.M. Vasconcelos 2020, Flavonoids: Biological activities and therapeutic potential. Nat Prod Res 5:692-705. doi:10.1080/14786419.2018.1493588
  28. Jung M.R., Y. Hwang, H.Y. Kim, H.S. Jeong, J.S. Park, D.B. Park, and J.S. Lee 2010, Analyses of capsaicinoids and ascorbic acid in pepper (Capsicum annuum L.) breeding lines. J Korean Soc Food Sci Nutr 39:1705-1709. (in Korean) doi:10.3746/jkfn.2010.39.11.1705
  29. Kuh J. 1976, The flavonoids: a class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 24:117-191. doi:10.1159/000399407
  30. Lee D.S., and H.K. Kim 1989, Carotenoid destruction and nonenzymatic browning during red pepper drying as functions of average moisture content and temperature. Korean J Food Sci Technol 21:425-429. (in Korean)
  31. Lee H.B., C.B. Yang, and T.J. Yu 1972, Studies on the chemical composition of some fruit vegetables and fruits in Korea (I)-On the free amino acid and sugar contents in tomato, watermelon, muskmelon, peach and plum. Korean J Food Sci Technol 4:36-43. (in Korean)
  32. Lee Y., L.R. Howard, and B. Villalon 1995, Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. J Food Sci 60:473-476. doi:10.1111/j.1365-2621.1995.tb09806.x
  33. Liu C., L. Cai, X. Lu, X. Han, and T. Ying 2012, Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. J Integr Agric 11:159-165. doi:10.1016/S1671-2927(12)60794-9
  34. Marin A., F. Ferreres, F.A. Tomas-Barberan, and M.I. Gil 2004, Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J Agric Food Chem 52:3861-3869. doi:10.1021/jf0497915
  35. Markus F., H.G. Daood, J. Kapitany, and P.A. Biacs 1999, Change in the carotenoid and antioxidant content of spice red pepper (paprika) as a function of ripening and some technological factors. J Agric Food Chem 47:100-107. doi:10.1021/jf980485z
  36. McDowell L.R. 1989, Vitamins in animal nutrition: Comparative aspects to human nutrition, Vitamin E. Academic Press, London, UK, pp 93-131.
  37. Ministry for Agriculture, Food and Rural Affairs (MAFRA) 2021, Agriculture food and rural affairs statistics. MAFRA, Sejong, Korea.
  38. Moing A., C. Renaud, M. Gaudillĕre, P. Raymond, P. Roudeillac, and B. Denoyes-Rothan 2001, Biochemical changes during fruit development of four strawberry cultivars. J Am Soc Hortic Sci 126:394-403. doi:10.21273/JASHS.126.4.394
  39. Mori A., S. Lehman, J. Okelly, T. Kumagai, J.C. Desmond, M. Pervan, W.H. McBride, M. Kizaki, and P. Koeffler 2006, Capsaicin, a component of red pepper, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res 66:3222-3229. doi:10.1158/0008-5472.CAN-05-0087
  40. Mutha R.E., A.U. Tatiya, and S.J. Surana 2021, Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future J Pharm Sci 7:1-13. doi:10.1186/s43094-020-00161-8
  41. Osuna-Garcia J.A., M.M. Wall, and C.A. Waddell 1998, Endogenous levels of tocopherols and ascorbic acid during fruit ripening of New Mexican-type chile (Capsicum annuum L.) cultivars. J Agric Food Chem 46:5093-5096. doi:10.1021/jf980588h
  42. Palevitch D., and L.E. Craker 1996, Nutritional and medical importance of red pepper (Capsicum spp.). J Herbs Spices Med Plants 3:55-83. doi:10.1300/J044v03n02_08
  43. Panche A.N., A.D. Diwan, and S.R. Chandra 2016, Flavonoids: an overview. J Nutr Sci 5:1-15. doi:10.1017/jns.2016.41
  44. Paran I., and E. van der Knaap 2007, Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841-3852. doi:10.1093/jxb/erm257
  45. Park K.Y. 1995, The nutrition antimutagenic and anticancer effects of kimchi. J Korean Soc Food Nutr 24:169-182. (in Korean)
  46. Park S., W.Y. Jeong, J.H. Lee, Y.H. Kim, S.W. Jeong, G.S. Kim, D.W. Bae, C.S. Lim, J.S. Jin, S.J. Lee, and S.C Shin 2012, Determination of polyphenol levels variation in Capsicum annuum L. cv. Chelsea (yellow bell pepper) infected by anthracnose (Colletotrichum gloeosporioides) using liquid chromatography-tandem mass spectrometry. Food Chem 130:981-985. doi:10.1016/j.foodchem.2011.08.026
  47. Rashida E.E., E.L.F. Babiker, and A.H.E. Tinay 1997, Changes in chemical composition of guava fruits during development and ripening. Food Chem 59:359-399. doi:10.1016/S0308-8146(96)00271-3
  48. Saini N., S.K. Gahlawat, and V. Lather 2017, Flavonoids: A nutraceutical and its role as anti-inflammatory and anticancer agent. In S Gahlawat, R Salar, P Siwach, J Duhan, S Kumar, P Kaur, eds, Plant Biotechnology: Recent Advancements and Developments. Springer, Singapore.
  49. Samec D., E. Karalija, I. Sola, V.V. Bok, and B. Salopek-Sondi 2021, The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 10:118. doi:10.3390/plants10010118
  50. Shin H.H., and S.R. Lee 1991, Quality attributes of Korean red pepper according to cultivars and growing areas. Korean J Food Sci Technol 23:296-300. (in Korean)
  51. Soh J.W., K.Y. Choi, Y.B. Lee, and S.Y. Nam 2011, Analysis of component factors concerned in taste of Korean hot pepper by sensory evaluation. J Bio-Env Con 20:297-303. (in Korean)
  52. Stewart C., B.C. Kang, K. Liu, M. Mazourek, S.L. Moore, E.Y. Yoo, B.D. Kim, I. Paran, and M. Jahn 2005, The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675-688. doi:10.1111/j.1365-313X.2005.02410.x
  53. Stewart C., M. Mazourek, G.M. Stellari, M. O'Connell, and M. Jahn 2007, Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58:979-991. doi:10.1093/jxb/erl243
  54. Thakur A., and R. Sharma 2018, Health promoting phytochemicals in vegetables: A mini review. Intl J Food Ferment Technol 8:107-117. doi:10.30954/2277-9396.02.2018.1
  55. Todd J.P.H., M.G. Bensinger, and T. Biftu 1977, Determination of pungency due to Capsicum by gas liquid chromatography. J Food Sci 42:660-665. doi:10.1111/j.1365-2621.1977.tb12573.x
  56. Wahyuni Y., A.R. Ballester, E. Sudarmonowati, R.J. Bino, and A.G. Bovy 2011, Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72:1358-1370. doi:10.1016/j.phytochem.2011.03.016
  57. Wahyuni Y., A.R. Gallester, E. Sudarmonowati, R.J. Bino, and A.G. Bovy 2013, Secondary metabolites of Capsicum species and their importance in the human diet. J Nat Prod 76:783-793. doi:10.1021/np300898z
  58. Wang J., Z. Peng, S. Zhou, J. Zhang, S. Zhang, X. Zhou, X. Zhang, and B. Peng 2011, A study of pungency of capsaicinoid as affected by their molecular structure alteration. Pharmacol Pharm 2:109. doi:10.4236/pp.2011.23014
  59. Wang S.Y., and P. Millner 2009, Effect of different cultural systems on antioxidant capacity, phenolic content, and fruit quality of strawberries (Fragaria × ananassa Duch.). J Agric Food Chem 57:9651-9657. doi:10.1021/jf9020575
  60. Zhang D., L. Chu, Y. Liu, A. Wang, B. Ji, W. Wu, F. Zhou, Y. Wei, Q. Cheng, and S. Cai 2011, Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. J Agric Food Chem 59:10277-10285. doi:10.1021/jf201773q
  61. Zhang W.Y., and A.L.W. Po 1994, The effectiveness of topically applied capsaicin. Eur J Clin Pharmacol 46:517-522. doi:10.1007/BF00196108