DOI QR코드

DOI QR Code

전산유체역학을 이용한 도로 식재 배치 유형에 따른 미세먼지 저감 분석

Analysis of Fine Dust Reduction according to Road Planting Arrangement Type Using Computational Fluid Dynamics

  • 이승헌 (국립공주대학교 농공학과) ;
  • 김찬민 (국립공주대학교 스마트팜공학과) ;
  • 김락우 (국립공주대학교 스마트팜공학과)
  • Seung-Hun Lee (Department of Agriculture Engineering, Kongju National University) ;
  • Chan-Min Kim (Department of SmartFarm Engineering, Kongju National University) ;
  • Rack-Woo Kim (Department of SmartFarm Engineering, Kongju National University)
  • 투고 : 2023.06.29
  • 심사 : 2023.09.18
  • 발행 : 2023.10.31

초록

미세먼지 저감을 위한 가장 현실적이고 효율적인 방법은 도시 지역의 녹지 조성으로 이에 대한 관심이 증가하고 있다. 국내 도시 특성상 도로변에 녹지를 조성할 경우 별도의 녹지 조성없이 대기 중에 떠다니는 미세먼지나 차량에서 발생한 미세먼지가 도로변 가로수에 흡착돼 미세먼지 저감에 효과적이다. 하지만, 미세먼지는 대기 중에 부유하며 존재하고 지역별 미세먼지 농도 차이와 식재 배치 차이로 인해 때문에 미세먼지 농도 현장 측정 및 대기 중 이동 경로에 대해 예측과 도로 식재 배치 유형별 미세먼지 저감효과에 대한 규명이 어려운 실정이다. 이에 본 연구에서는 CFD 시뮬레이션을 이용하여 도로 중앙분리대와 가로수의 식재 유형별로 미세먼지 농도변화 및 미세먼지 저감효과를 분석하였다. 분석 결과 미세먼지 저감을 위해서는 중앙분리대에 식재가 있는 것이 미세먼지 저감 효과가 탁월할 것으로 보이며 가로수에 교목과 관목을 동시에 설치하는 것이 바람직하다고 판단된다. 본 결과를 바탕으로 도시 대기환경 개선을 위한 가로녹지 식재 기준(가이드라인) 마련에 효과적으로 이용될 것으로 판단되며 향후 도시 도로변 미세먼지 저감 연구 진행에 선행연구의 참고자료로 활용될 수 있을 것으로 기대된다.

The importance of urban green space creation is increasingly recognized as the most realistic and efficient approach for fine dust mitigation in urban areas. Particularly considering the characteristics of domestic cities, the application of buffer green spaces along roads can maximize the efficiency of fine dust reduction without the need for separate green space creation. Accordingly, this study analyzed the fine dust mitigation effects based on the types of plantings in the central dividers and roadside trees in Jeonju City, Jeollabuk-do. To do this, we controlled various external variables of urban space and considered the planting arrangement types in the central dividers, carrying out the analysis using a CFD simulation. The simulation results confirmed that the central dividers with plantings demonstrated more effective ultrafine dust reduction than those without. Moreover, the arrangement of roadside trees showed a greater ultrafine dust reduction effect when adopting a multilayered structure compared to a single layer. Based on these findings, we concluded that installing both trees and shrubs simultaneously in the central dividers and along roads was effective for ultrafine dust mitigation. On this basis, we quantified the dust reduction effects of plants in urban street environments and proposed planting guidelines for roadside green spaces to improve air quality.

키워드

참고문헌

  1. Colleen F. 2017, Interception of particulate matter by street tree leaves in an inland valley community of southern California. PhD Dissertation, California State Polytechnic Univ., USA.
  2. Hong S.W. 2008, Analytical comparison on ventilation efficiencies of naturally-ventilated multi-spant greenhouse and development of crop model using CFD technology. MS Dissertation, Seoul National Univ., Korea.
  3. Hui E.Q., X.E. Hu, C.B. Jiang, and Z.D. Zhu 2010, A study of drag coefficient related with vegetation based on the flume experiment. J Hydrodynam B 22:329-337. doi:10.1016/S1001-6058(09)60062-7
  4. Hwang H.J. 2012, Characteristics of soot aerosol removal according to tree species. MS Dissertation, Hanyang Univ., Korea.
  5. Jo H.K., and H.M. Park 2015, Effects and improvement of carbon reduction by greenspace establishment in Riparian zones. J Korean Inst Landsc Archit 43:16-24. (in Korean) doi:10.9715/kila.2015.43.6.016
  6. Kim B.G., W.S. Lee, H.I. Jo, and B.G. Lee 2020, Making primary policies for reducing particulate matter. J Soc e-Bus Stud 25:109-121. (in Korean) doi:10.7838/jsebs.2020.25.1.109
  7. Kim D.Y., B.M. Yoon, and I.A. Choi 2017, Proposal for ordinance of atmospheric environment management in Gyeonggi-do. Gyeonggi Res Inst 1-122. (in Korean)
  8. Koch K., R. Samson, and S. Denys 2019, Aerodynamic characterisation of green wall vegetation based on plant morphology: An experimental and computational fluid dynamics approach. Biosyst Engin 178:34-51. doi:10.1016/j.biosystemseng.2018.10.019
  9. Lee E.Y., E.J. Yoon, M.N. Kim, and E.Y. Lee 2019, Improvement of green buffer zone function for reduction of particulate matters in urban area. Land and Housing Institute (LHI), Korea Land & Housing Corporation (LH). pp 1-166. (in Korean)
  10. Ministry of Environment (ME) 2016, If you know it right away, you can see it. What is the fine dust. ME, Daegu, Korea. (in Korean)
  11. National Institude of Forest Sciecne (NIFOS) 2018, Urban forest creation and management guidelines for fine dust reduction. NIFOS, Seoul, Korea. (in Korean)
  12. Neinavaz E., A.K. Skidmore, R. Darvishzadeh, and T. Groen 2016, Retrieval of leaf area index in different plant species using thermal hyperspectral data. ISPRS J Photogramm Remote Sens 119:390-401. doi:10.1016/j.isprsjprs.2016.07.001
  13. Park J.S., C.H. Kim, J.J. Lee, J.H. Kim, E.H. Hwang, and S.D. Kim 2010, A study on chemical composition of fine particles in the Sungdong Area, Seoul, Korea. J Korean Soc Urban Environ 10:293-303. (in Korean)
  14. Qin H., B. Hong, B. Huang, X. Cui, and T. Zhang 2020, How dynamic growth of avenue trees affects particulate matter dispersion: CFD simulations in street canyons. Sustain Cities Soc 61:102331. doi:10.1016/j.scs.2020.102331
  15. Richards P.J. 1989, Computational modelling of wind flow around low-rise buildings using PHOENICS. AFRC Institute of Engineering Research Buildings and Livestock Div., Scotland.
  16. Robert P., H. Gawronska, M. Wrochna, S.W. Gawronski, and A. Saebo 2013, Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes-a 3-year study. Int J Phytoremed 15:245-256. doi:10.1080/15226514.2012.694498
  17. Ryan J.L., C. McArthur, and D.F. Hochuli 2016, Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For Urban Green 20:249-253. doi:10.1016/j.ufug.2016.09.008
  18. Song C.K. 2019, Fine dust status and air quality forecast. Energy Forcus 16:6-11. (in Korean)
  19. Song M.J. 2020, Global warming and fine dust issues and energy data utilization. HelloT. Available via https://www.hellot.net/news/article.html?no=49521 (in Korean)
  20. Tetsuro T., N. Kojiro, and K. Koji 2008, AIJ guide for numerical prediction of wind loads on buildings. J Wind Engin Ind Aerodyn 96(10-11):1974-1984. doi:10.1016/j.jweia.2008.02.020
  21. Weikang Z., B. Wang, and X. Niu 2017, Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests 8:92. doi:10.3390/f8030092
  22. Yoshihide T., M. Akashi, Y. Ryuichiro, K. Hiroto, N. Tsuyoshi, Y. Masaru, and S. Taichi 2008, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Engin Ind Aerodyn 96(10-11):1749-1761. doi:10.1016/j.jweia.2008.02.058
  23. Zheng S.L., J.M. Guldmann, Z. Liu, and L. Zhao 2020, Predicting the influence of subtropical trees on urban wind through wind tunnel tests and numerical simulations. Sustain Cities Soc 57:102116. doi:10.1016/j.scs.2020.102116