DOI QR코드

DOI QR Code

Improvement of Inflammation, Diabetes, and Obesity by Forest Product-Derived Polysaccharides through the Human Intestinal Microbiota

  • Seong-woo MYEONG (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Yong Ju LEE (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Do Hyun KIM (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Tae-Jong KIM (Department of Forest Products and Biotechnology, Kookmin University)
  • Received : 2023.06.12
  • Accepted : 2023.08.14
  • Published : 2023.09.25

Abstract

The intestinal microbiota plays a crucial role in determining human health, rendering it a major focus of scientific investigation. Rather than eliminating all microbes, promoting the proliferation of beneficial microorganisms within the gut has been recognized as a more effective approach to improving health. Unfavorable conditions potentially alter gut microbial populations, including a reduction in microbial diversity. However, intentionally enhancing the abundance of beneficial gut microbes can restore a state of optimal health. Polysaccharides are widely acknowledged for their potential to improve the gut microbiota. This review emphasizes the findings of recent studies examining the effects of forest product-derived polysaccharides on enhancing the gut microbiota and alleviating inflammation, diabetes symptoms, and obesity. The findings of several studies reviewed in this paper strongly suggest that forest products serve as an excellent dietary source for improving the gut microbiota and potentially offer valuable dietary interventions for chronic health problems, such as inflammation, diabetes, and obesity.

Keywords

Acknowledgement

This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No.: 2023473B10-2325-EE02)' provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Aho, V.T.E., Houser, M.C., Pereira, P.A.B., Chang, J., Rudi, K., Paulin, L., Hertzberg, V., Auvinen, P., Tansey, M.G., Scheperjans, F. 2021. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson's disease. Molecular Neurodegeneration 16(1): 6. 
  2. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., et al. 2011. Enterotypes of the human gut microbiome. Nature 473(7346): 174-180.  https://doi.org/10.1038/nature09944
  3. Askarova, S., Umbayev, B., Masoud, A.R., Kaiyrlykyzy, A., Safarova, Y., Tsoy, A., Olzhayev, F., Kushugulova, A. 2020. The links between the gut microbiome, aging, modern lifestyle and Alzheimer's disease. Frontiers in Cellular and Infection Microbiology 10: 104. 
  4. Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F., Gordon, J.I. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences 101(44): 15718-15723.  https://doi.org/10.1073/pnas.0407076101
  5. Baker, J.L., Bor, B., Agnello, M., Shi, W., He, X. 2017. Ecology of the oral microbiome: Beyond bacteria. Trends in Microbiology 25(5): 362-374.  https://doi.org/10.1016/j.tim.2016.12.012
  6. Basu, P., Maier, C. 2018. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomedicine and Pharmacotherapy 107: 1648-1666.  https://doi.org/10.1016/j.biopha.2018.08.100
  7. Bauer, H., Horowitz, R.E., Levenson, S.M., Popper, H. 1963. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. The American Journal of Pathology 42(4): 471-483. 
  8. Bik, E.M. 2016. The hoops, hopes, and hypes of human microbiome research. Yale Journal of Biology and Medicine 89(3): 363-373. 
  9. Bindels, L.B., Delzenne, N.M., Cani, P.D., Walter, J. 2015. Towards a more comprehensive concept for prebiotics. Nature Reviews Gastroenterology & Hepatology 12(5): 303-310.  https://doi.org/10.1038/nrgastro.2015.47
  10. Cait, A., Hughes, M.R., Antignano, F., Cait, J., Dimitriu, P.A., Maas, K.R., Reynolds, L.A., Hacker, L., Mohr, J., Finlay, B.B., Zaph, C., McNagny, K.M., Mohn, W.W. 2018. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunology 11(3): 785-795.  https://doi.org/10.1038/mi.2017.75
  11. Chang, C.J., Lin, C.S., Lu, C.C., Martel, J., Ko, Y.F., Ojcius, D.M., Tseng, S.F., Wu, T.R., Chen, Y.Y.M., Young, J.D., Lai, H.C. 2015. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications 6: 7489. 
  12. Chen, M., Xiao, D., Liu, W., Song, Y., Zou, B., Li, L., Li, P., Cai, Y., Liu, D., Liao, Q., Xie, Z. 2020. Intake of Ganoderma lucidum polysaccharides re- verses the disturbed gut microbiota and metabolism in type 2 diabetic rats. International Journal of Biological Macromolecules 155: 890-902.  https://doi.org/10.1016/j.ijbiomac.2019.11.047
  13. Chen, X., Cai, B., Wang, J., Sheng, Z., Yang, H., Wang, D., Chen, J., Ning, Q. 2021. Mulberry leaf-derived polysaccharide modulates the immune response and gut microbiota composition in immunosuppressed mice. Journal of Functional Foods 83: 104545. 
  14. Chen, Y., Jin, L., Li, Y., Xia, G., Chen, C., Zhang, Y. 2018. Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice. Journal of Functional Foods 49: 20-31.  https://doi.org/10.1016/j.jff.2018.08.015
  15. Chen, Y., Liu, D., Wang, D., Lai, S., Zhong, R., Liu, Y., Yang, C., Liu, B., Sarker, M.R., Zhao, C. 2019. Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice. Food and Chemical Toxicology 126: 295-302.  https://doi.org/10.1016/j.fct.2019.02.034
  16. Costantini, L., Molinari, R., Farinon, B., Merendino, N. 2017. Impact of omega-3 fatty acids on the gut microbiota. International Journal of Molecular Sciences 18(12): 2645. 
  17. Cui, L., Guan, X., Ding, W., Luo, Y., Wang, W., Bu, W., Song, J., Tan, X., Sun, E., Ning, Q., Liu, G., Jia, X., Feng, L. 2021. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. International Journal of Biological Macromolecules 166: 1035-1045.  https://doi.org/10.1016/j.ijbiomac.2020.10.259
  18. De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I.B., La Storia, A., Laghi, L., Serrazanetti, D.I., Cagno, R.D., Ferrocino, I., Lazzi, C., Turroni, S., Cocolin, L., Brigidi, P., Neviani, E., Gobbetti, M., O'Toole, P.W., Ercolini, D. 2016. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11): 1812-1821.  https://doi.org/10.1136/gutjnl-2015-309957
  19. De la Cuesta-Zuluaga, J., Mueller, N.T., Alvarez-Quintero, R., Velasquez-Mejia, E.P., Sierra, J.A., Corrales-Agudelo, V., Carmona, J.A., Abad, J.M., Escobar, J.S. 2018. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 11(1): 51. 
  20. Deehan, E.C., Yang, C., Perez-Munoz, M.E., Nguyen, N.K., Cheng, C.C., Triador, L., Zhang, Z., Bakal, J.A., Walter, J. 2020. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host & Microbe 27(3): 389-404.E6.  https://doi.org/10.1016/j.chom.2020.01.006
  21. Di Costanzo, M., De Paulis, N., Biasucci, G. 2021. Butyrate: A link between early life nutrition and gut microbiome in the development of food allergy. Life 11(5): 384. 
  22. Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O'Connell, T.M., Bunger, M.K., Bultman, S.J. 2011. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabolism 13(5): 517-526.  https://doi.org/10.1016/j.cmet.2011.02.018
  23. Dreyfus, D.H. 2013. Herpesviruses and the microbiome. The Journal of Allergy and Clinical Immunology 132(6): 1278-1286.  https://doi.org/10.1016/j.jaci.2013.02.039
  24. Ella Nkogo, L.F., Bopenga Bopenga, C.S.A., Ngohang, F.E., Mengome, L.E., Aboughe Angone, S., Edou Engonga, P. 2022. Phytochemical and anti-termite efficiency study of Guibourtia tessmanii (harms) J. Leonard (Kevazingo) bark extracts from Gabon. Journal of the Korean Wood Science and Technology 50(2): 113-125.  https://doi.org/10.5658/WOOD.2022.50.2.113
  25. Enam, F., Mansell, T.J. 2019. Prebiotics: Tools to manipulate the gut microbiome and metabolome. Journal of Industrial Microbiology and Biotechnology 46(9-10): 1445-1459.  https://doi.org/10.1007/s10295-019-02203-4
  26. Faust, K., Sathirapongsasuti, J.F., Izard, J., Segata, N., Gevers, D., Raes, J., Huttenhower, C. 2012. Microbial co-occurrence relationships in the human microbiome. PLOS Computational Biology 8(7): e1002606. 
  27. Feng, H., Zhang, S., Wan, J.M.F., Gui, L., Ruan, M., Li, N., Zhang, H., Liu, Z., Wang, H. 2018. Polysaccharides extracted from Phellinus linteus ameliorate high-fat high-fructose diet induced insulin resistance in mice. Carbohydrate Polymers 200: 144-153.  https://doi.org/10.1016/j.carbpol.2018.07.086
  28. Flint, H.J., Scott, K.P., Duncan, S.H., Louis, P., Forano, E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4): 289-306. https://doi.org/10.4161/gmic.19897
  29. Gacesa, R., Kurilshikov, A., Vich Vila, A., Sinha, T., Klaassen, M.A.Y., Bolte, L.A., et al. 2022. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604(7907): 732-739.  https://doi.org/10.1038/s41586-022-04567-7
  30. Gao, H., Wen, J.J., Hu, J.L., Nie, Q.X., Chen, H.H., Xiong, T., Nie, S.P., Xie, M.Y. 2018. Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Carbohydrate Polymers 201: 624-633.  https://doi.org/10.1016/j.carbpol.2018.08.075
  31. Ghannoum, M.A., Jurevic, R.J., Mukherjee, P.K., Cui, F., Sikaroodi, M., Naqvi, A., Gillevet, P.M. 2010. Characterization of the oral fungal microbiome (myco- biome) in healthy individuals. PLOS Pathogens 6(1): e1000713. 
  32. Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J.K., Lynch, S.V., Knight, R. 2018. Current understanding of the human microbiome. Nature Medicine 24(4): 392-400.  https://doi.org/10.1038/nm.4517
  33. Guan, X., Feng, Y., Jiang, Y., Hu, Y., Zhang, J., Li, Z., Song, C., Li, F., Hou, J., Shen, T., Hu, W. 2022. Simulated digestion and in vitro fermentation of a polysaccharide from lotus (Nelumbo nucifera Gaertn.) root residue by the human gut microbiota. Food Research International 155: 111074. 
  34. Guo, W.L., Deng, J.C., Pan, Y.Y., Xu, J.X., Hong, J.L., Shi, F.F., Liu, G.L., Qian, M., Bai, W.D., Zhang, W., Liu, B., Zhang, Y.Y., Luo, P.J., Ni, L., Rao, P.F., Lv, X.C. 2020. Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. International Journal of Biological Macromolecules 153: 1231-1240.  https://doi.org/10.1016/j.ijbiomac.2019.10.253
  35. Ham, Y., Kim, T.J. 2018. Plant extracts inhibiting biofilm formation by Streptococcus mutans without antibiotic activity. Journal of the Korean Wood Science and Technology 46(6): 692-702.  https://doi.org/10.5658/WOOD.2018.46.6.692
  36. Ham, Y., Yang, J., Choi, W.S., Ahn, B.J., Park, M.J. 2020. Antibacterial activity of essential oils from Pinaceae leaves against fish pathogens. Journal of the Korean Wood Science and Technology 48(4): 527-547.  https://doi.org/10.5658/WOOD.2020.48.4.527
  37. Hapfelmeier, S., Lawson, M.A.E., Slack, E., Kirundi, J.K., Stoel, M., Heikenwalder, M., Cahenzli, J., Velykoredko, Y., Balmer, M.L., Endt, K., Geuking, M.B., Curtiss, R., McCoy, K.D., Macpherson, A.J. 2010. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328(5986): 1705-1709.  https://doi.org/10.1126/science.1188454
  38. Hoffmann, C., Dollive, S., Grunberg, S., Chen, J., Li, H., Wu, G.D., Lewis, J.D., Bushman, F.D. 2013. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLOS ONE 8(6): e66019. 
  39. Hooper, L.V., Macpherson, A.J. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology 10(3): 159-169.  https://doi.org/10.1038/nri2710
  40. Hu, Y., Teng, C., Yu, S., Wang, X., Liang, J., Bai, X., Dong, L., Song, T., Yu, M., Qu, J. 2017. Inonotus obliquus polysaccharide regulates gut microbiota of chronic pancreatitis in mice. AMB Express 7(1): 39. 
  41. Huh, J.S., Lee, S., Kim, D.S., Choi, M.S., Choi, H., Lee, K.H. 2022. Antioxidative and circadian rhythm regulation effect of Quercus gilva extract. Journal of the Korean Wood Science and Technology 50(5): 338-352.  https://doi.org/10.5658/WOOD.2022.50.5.338
  42. Ivanov, I.I., Atarashi, K., Manel, N., Brodie, E.L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K.C., Santee, C.A., Lynch, S.V., Tanoue, T., Imaoka, A., Itoh, K., Takeda, K., Umesaki, Y., Honda, K., Littman, D.R. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3): 485-498.  https://doi.org/10.1016/j.cell.2009.09.033
  43. Ivanov, I.I., Frutos, R.L., Manel, N., Yoshinaga, K., Rifkin, D.B., Sartor, R.B., Finlay, B.B., Littman, D.R. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host & Microbe 4(4): 337-349.  https://doi.org/10.1016/j.chom.2008.09.009
  44. Ji, Y., Su, A., Ma, G., Tao, T., Fang, D., Zhao, L., Hu, Q. 2020. Comparison of bioactive constituents and effects on gut microbiota by in vitro fermentation between Ophicordyceps sinensis and Cordyceps militaris. Journal of Functional Foods 68: 103901. 
  45. Kaliannan, K., Wang, B., Li, X.Y., Kim, K.J., Kang, J.X. 2015. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Scientific Reports 5(1): 11276. 
  46. Kanwal, S., Joseph, T.P., Aliya, S., Song, S., Saleem, M.Z., Nisar, M.A., Wang, Y., Meyiah, A., Ma, Y., Xin, Y. 2020. Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways. Journal of Functional Foods 64: 103641. 
  47. Kaur, H., Kaur, G., Ali, S.A. 2022. Dairy-based probiotic-fermented functional foods: An update on their health-promoting properties. Fermentation 8(9): 425. 
  48. Kim, S., Lee, S., Cho, S., Hong, C., Park, S., Park, M., Choi, I. 2017. Antioxidant activities of Cryptomeria japonica leaves extracts by extraction methods. Journal of the Korean Wood Science and Technology 45(5): 495-510.  https://doi.org/10.5658/WOOD.2017.45.5.495
  49. Kong, H.H. 2011. Skin microbiome: Genomics-based insights into the diversity and role of skin microbes. Trends in Molecular Medicine 17(6): 320-328.  https://doi.org/10.1016/j.molmed.2011.01.013
  50. Lan, Y., Sun, Q., Ma, Z., Peng, J., Zhang, M., Wang, C., Zhang, X., Yan, X., Chang, L., Hou, X., Qiao, R., Mulati, A., Zhou, Y., Zhang, Q., Liu, Z., Liu, X. 2022. Seabuckthorn polysaccharide ameliorates high-fat diet-induced obesity by gut microbiota-SCFA-sliver axis. Food & Function 13(5): 2925-2937.  https://doi.org/10.1039/D1FO03147C
  51. Laparra, J.M., Sanz, Y. 2010. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacological Research 61(3): 219-225.  https://doi.org/10.1016/j.phrs.2009.11.001
  52. Lee, B.H., Hsu, K.T., Chen, Y.Z., Tain, Y.L., Hou, C.Y., Lin, Y.C., Hsu, W.H. 2022. Polysaccharide extracts derived from defloration waste of fruit pitaya regulates gut microbiota in a mice model. Fermentation 8(3): 108. 
  53. Lee, S.Y., Lee, D.S., Cho, S.M., Kim, J.C., Park, M.J., Choi, I.G. 2021. Antioxidant properties of 7 domestic essential oils and identification of physiologically active components of essential oils against Candida albicans. Journal of the Korean Wood Science and Technology 49(1): 23-43.  https://doi.org/10.5658/WOOD.2021.49.1.23
  54. Li, K., Zhuo, C., Teng, C., Yu, S., Wang, X., Hu, Y., Ren, G., Yu, M., Qu, J. 2016. Effects of Ganoderma lucidum polysaccharides on chronic pancreatitis and intestinal microbiota in mice. International Journal of Biological Macromolecules 93(Part A): 904-912.  https://doi.org/10.1016/j.ijbiomac.2016.09.029
  55. Li, Q., Hu, J., Nie, Q., Chang, X., Fang, Q., Xie, J., Li, H., Nie, S. 2021. Hypoglycemic mechanism of polysaccharide from Cyclocarya paliurus leaves in type 2 diabetic rats by gut microbiota and host metabolism alteration. Science China Life Sciences 64: 117-132.  https://doi.org/10.1007/s11427-019-1647-6
  56. Li, Q., Liu, W., Feng, Y., Hou, H., Zhang, Z., Yu, Q., Zhou, Y., Luo, Q., Luo, Y., Ouyang, H., Zhang, H., Zhu, W. 2022a. Radix Puerariae thomsonii polysaccharide (RPP) improves inflammation and lipid peroxidation in alcohol and high-fat diet mice by regulating gut microbiota. International Journal of Biological Macromolecules 209: 858-870.  https://doi.org/10.1016/j.ijbiomac.2022.04.067
  57. Li, Y., Bai, D., Lu, Y., Chen, J., Yang, H., Mu, Y., Xu, J., Huang, X., Li, L. 2022b. The crude guava poly- saccharides ameliorate high-fat diet-induced obesity in mice via reshaping gut microbiota. International Journal of Biological Macromolecules 213: 234-246.  https://doi.org/10.1016/j.ijbiomac.2022.05.130
  58. Linares, D.M., Gomez, C., Renes, E., Fresno, J.M., Tornadijo, M.E., Ross, R.P., Stanton, C. 2017. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Frontiers in Microbiology 8: 846. 
  59. Lindell, A.E., Zimmermann-Kogadeeva, M., Patil, K.R. 2022. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nature Reviews Microbiology 20(7): 431-443.  https://doi.org/10.1038/s41579-022-00681-5
  60. Liu, H., Wu, H., Wang, Q. 2019. Health-promoting effects of dietary polysaccharide extracted from Dendrobium aphyllum on mice colon, including microbiota and immune modulation. International Journal of Food Science & Technology 54(5): 1684-1696. 
  61. Liu, Y., Li, Y., Ke, Y., Li, C., Zhang, Z., Wu, Y., Hu, B., Liu, A., Luo, Q., Wu, W. 2021. In vitro saliva-gastrointestinal digestion and fecal fermentation of Oudemansiella radicata polysaccharides reveal its digestion profile and effect on the modulation of the gut microbiota. Carbohydrate Polymers 251: 117041. 
  62. Liu, Y., Wang, C., Li, J., Li, T., Zhang, Y., Liang, Y., Mei, Y. 2020. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. The FASEB Journal 34(1): 1065-1078.  https://doi.org/10.1096/fj.201901943RR
  63. Lloyd-Price, J., Abu-Ali, G., Huttenhower, C. 2016. The healthy human microbiome. Genome Medicine 8(1): 51. 
  64. Ma, G., Kimatu, B.M., Zhao, L., Yang, W., Pei, F., Hu, Q. 2017. In vivo fermentation of a Pleurotus eryngii polysaccharide and its effects on fecal microbiota composition and immune response. Food & Function 8(5): 1810-1821.  https://doi.org/10.1039/C7FO00341B
  65. Manurung, H., Sari, R.K., Syafii, W., Cahyaningsih, U., Ekasari, W. 2019. Antimalarial activity and phytochemical profile of ethanolic and aqueous extracts of bidara laut (Strychnos ligustrina Blum) wood. Journal of the Korean Wood Science and Technology 47(5): 587-596.  https://doi.org/10.5658/WOOD.2019.47.5.587
  66. Markowiak-Kopec, P., Slizewska, K. 2020. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12(4): 1107. 
  67. Martinez, J.E., Vargas, A., Perez-Sanchez, T., Encio, I.J., Cabello-Olmo, M., Barajas, M. 2021. Human microbiota network: Unveiling potential crosstalk between the different microbiota ecosystems and their role in health and disease. Nutrients 13(9): 2905. 
  68. Miqdady, M., Al Mistarihi, J., Azaz, A., Rawat, D. 2020. Prebiotics in the infant microbiome: The past, present, and future. Pediatric Gastroenterology, Hepatology & Nutrition 23(1): 1-14.  https://doi.org/10.5223/pghn.2020.23.1.1
  69. Mottaghi, S., Abbaszadeh, H. 2022. A comprehensive mechanistic insight into the dietary and estrogenic lignans, arctigenin and sesamin as potential anticarcinogenic and anticancer agents. Current status, challenges, and future perspectives. Critical Reviews in Food Science and Nutrition 62(26): 7301-7318.  https://doi.org/10.1080/10408398.2021.1913568
  70. Murga-Garrido, S.M., Hong, Q., Cross, T.W.L., Hutchison, E.R., Han, J., Thomas, S.P., Vivas, E.I., Denu, J., Ceschin, D.G., Tang, Z.Z., Rey, F.E. 2021. Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome 9(1): 117. 
  71. Murugesan, S., Nirmalkar, K., Hoyo-Vadillo, C., GarciaEspitia, M., Ramirez-Sanchez, D., Garcia-Mena, J. 2018. Gut microbiome production of short-chain fatty acids and obesity in children. European Journal of Clinical Microbiology & Infectious Diseases 37(4): 621-625.  https://doi.org/10.1007/s10096-017-3143-0
  72. Nie, Q., Hu, J., Gao, H., Fan, L., Chen, H., Nie, S. 2019. Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocolloids 86: 34-42.  https://doi.org/10.1016/j.foodhyd.2017.12.026
  73. Pan, Y., Wan, X., Zeng, F., Zhong, R., Guo, W., Lv, X.C., Zhao, C., Liu, B. 2020. Regulatory effect of Grifola frondosa extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats. International Journal of Biological Macromolecules 155: 1030-1039.  https://doi.org/10.1016/j.ijbiomac.2019.11.067
  74. Petersen, C., Bell, R., Klag, K.A., Lee, S.H., Soto, R., Ghazaryan, A., Buhrke, K., Ekiz, H.A., Ost, K.S., Boudina, S., O'Connell, R.M., Cox, J.E., Villanueva, C.J., Stephens, W.Z., Round, J.L. 2019. T cell-mediated regulation of the microbiota protects against obesity. Science 365(6451): eaat9351. 
  75. Peterson, J., Dwyer, J., Adlercreutz, H., Scalbert, A., Jacques, P., McCullough, M.L. 2010. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutrition Reviews 68(10): 571-603.  https://doi.org/10.1111/j.1753-4887.2010.00319.x
  76. Rastall, R.A., Gibson, G.R. 2015. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Current Opinion in Biotechnology 32: 42-46.  https://doi.org/10.1016/j.copbio.2014.11.002
  77. Ratajczak, W., Ryl, A., Mizerski, A., Walczakiewicz, K., Sipak, O., Laszczynska, M. 2019. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica 66(1): 1-12.  https://doi.org/10.18388/abp.2018_2648
  78. Rehman, A.U., Siddiqui, N.Z., Farooqui, N.A., Alam, G., Gul, A., Ahmad, B., Asim, M., Khan, A.I., Xin, Y., Zexu, W., Ju, H.S., Xin, W., Lei, S., Wang, L. 2022. Morchella esculenta mushroom polysaccharide attenuates diabetes and modulates intestinal permeability and gut microbiota in a type 2 diabetic mice model. Frontiers in Nutrition 9: 984695. 
  79. Ren, Y., Geng, Y., Du, Y., Li, W., Lu, Z.M., Xu, H.Y., Xu, G.H., Shi, J.S., Xu, Z.H. 2018. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. The Journal of Nutritional Biochemistry 57: 67-76.  https://doi.org/10.1016/j.jnutbio.2018.03.005
  80. Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L.R., Scaldaferri, F., Pulcini, G., Miggiano, G.A.D., Gasbarrini, A., Mele, M.C. 2019. Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients 11(10): 2393. 
  81. Round, J.L., Mazmanian, S.K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology 9(5): 313-323.  https://doi.org/10.1038/nri2515
  82. Rowan-Nash, A.D., Korry, B.J., Mylonakis, E., Belenky, P. 2019. Cross-domain and viral interactions in the microbiome. Microbiology and Molecular Biology Reviews 83(1): e00044-18. 
  83. Sakkas, H., Bozidis, P., Touzios, C., Kolios, D., Athanasiou, G., Athanasopoulou, E., Gerou, I., Gartzonika, C. 2020. Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicina 56(2): 88. 
  84. Shajib, M.S., Khan, W.I. 2015. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiologica 213(3): 561-574.  https://doi.org/10.1111/apha.12430
  85. Shi, L.L., Li, Y., Wang, Y., Feng, Y. 2015. MDG-1, an Ophiopogon polysaccharide, regulate gut microbiota in high-fat diet-induced obese C57BL/6 mice. International Journal of Biological Macromolecules 81: 576-583.  https://doi.org/10.1016/j.ijbiomac.2015.08.057
  86. Shondelmyer, K., Knight, R., Sanivarapu, A., Ogino, S., Vanamala, J.K.P. 2018. Ancient Thali diet: Gut microbiota, immunity, and health. Yale Journal of Biology and Medicine 91(2): 177-184. 
  87. Tanes, C., Bittinger, K., Gao, Y., Friedman, E.S., Nessel, L., Paladhi, U.R., Chau, L., Panfen, E., Fischbach, M.A., Braun, J., Xavier, R.J., Clish, C.B., Li, H., Bushman, F.D., Lewis, J.D., Wu, G.D. 2021. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host & Microbe 29(3): 394-407.E5.  https://doi.org/10.1016/j.chom.2020.12.012
  88. Trost, K., Ulaszewska, M.M., Stanstrup, J., Albanese, D., De Filippo, C., Tuohy, K.M., Natella, F., Scaccini, C., Mattivi, F. 2018. Host: Microbiome co-metabolic processing of dietary polyphenols: An acute, single blinded, cross-over study with different doses of apple polyphenols in healthy subjects. Food Research International 112: 108-128.  https://doi.org/10.1016/j.foodres.2018.06.016
  89. Tuohy, K.M., Conterno, L., Gasperotti, M., Viola, R. 2012. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. Journal of Agricultural and Food Chemistry 60(36): 8776-8782.  https://doi.org/10.1021/jf2053959
  90. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., Egholm, M., Henrissat, B., Heath, A.C., Knight, R., Gordon, J.I. 2009. A core gut microbiome in obese and lean twins. Nature 457(7228): 480-484.  https://doi.org/10.1038/nature07540
  91. Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122): 1027-1031.  https://doi.org/10.1038/nature05414
  92. Uebanso, T., Shimohata, T., Mawatari, K., Takahashi, A. 2020. Functional roles of B-vitamins in the gut and gut microbiome. Molecular Nutrition & Food Re- search 64(18): 2000426. 
  93. Umesaki, Y., Setoyama, H., Matsumoto, S., Okada, Y. 1993. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79(1): 32-37. 
  94. Wade, W.G. 2013. The oral microbiome in health and disease. Pharmacological Research 69(1): 137-143.  https://doi.org/10.1016/j.phrs.2012.11.006
  95. Walker, R.L., Vlamakis, H., Lee, J.W.J., Besse, L.A., Xanthakis, V., Vasan, R.S., Shaw, S.Y., Xavier, R.J. 2021. Population study of the gut microbiome: Associations with diet, lifestyle, and cardiometabolic disease. Genome Medicine 13: 188. 
  96. Wang, B., Yao, M., Lv, L., Ling, Z., Li, L. 2017. The human microbiota in health and disease. Engineering 3(1): 71-82.  https://doi.org/10.1016/J.ENG.2017.01.008
  97. Wang, B., Yu, H., He, Y., Wen, L., Gu, J., Wang, X., Miao, X., Qiu, G., Wang, H. 2021. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of the gut microbiota. Food & Function 12(17): 7923-7937.  https://doi.org/10.1039/D1FO00078K
  98. Wang, H.Y., Guo, L.X., Hu, W.H., Peng, Z.T., Wang, C., Chen, Z.C., Liu, E.Y.L., Dong, T.T.X., Wang, T.J., Tsim, K.W.K. 2019. Polysaccharide from tuberous roots of Ophiopogon japonicus regulates gut micro- biota and its metabolites during alleviation of high-fat diet-induced type-2 diabetes in mice. Journal of Functional Foods 63: 103593.  https://doi.org/10.1016/j.jff.2019.103593
  99. Wang, L., Li, C., Huang, Q., Fu, X. 2020a. Polysaccharide from Rosa roxburghii tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice. Journal of Agricultural and Food Chemistry 68(1): 147-159.  https://doi.org/10.1021/acs.jafc.9b06247
  100. Wang, W., Xu, A.L., Li, Z.C., Li, Y., Xu, S.F., Sang, H.C., Zhi, F. 2020b. Combination of probiotics and Salvia miltiorrhiza polysaccharide alleviates hepatic steatosis via gut microbiota modulation and insulin resistance improvement in high fat-induced NAFLD mice. Diabetes & Metabolism Journal 44(2): 336-348.  https://doi.org/10.4093/dmj.2019.0042
  101. Wen, Z., Tian, H., Liang, Y., Guo, Y., Deng, M., Liu, G., Li, Y., Liu, D., Sun, B. 2022. Moringa oleifera polysaccharide regulates colonic microbiota and immune repertoire in C57BL/6 mice. International Journal of Biological Macromolecules 198: 135-146.  https://doi.org/10.1016/j.ijbiomac.2021.12.085
  102. Wilson, I.D., Nicholson, J.K. 2017. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Translational Research 179: 204-222.  https://doi.org/10.1016/j.trsl.2016.08.002
  103. Wong, J.M.W. 2014. Gut microbiota and cardiometabolic outcomes: Influence of dietary patterns and their associated components. The American Journal of Clinical Nutrition 100(Suppl 1): 369S-377S.  https://doi.org/10.3945/ajcn.113.071639
  104. Wu, J., Xu, Y., Su, J., Zhu, B., Wang, S., Liu, K., Wang, H., Shi, S., Zhang, Q., Qin, L., Wang, S. 2020. Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity. Carbohydrate Polymers 248: 116780. 
  105. Xie, S.Z., Liu, B., Ye, H.Y., Li, Q.M., Pan, L.H., Zha, X.Q., Liu, J., Duan, J., Luo, J.P. 2019. Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice. Carbohydrate Polymers 206: 149-162.  https://doi.org/10.1016/j.carbpol.2018.11.002
  106. Xu, X., Yang, J., Ning, Z., Zhang, X. 2015. Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota. Food & Function 6(8): 2653-2663.  https://doi.org/10.1039/C5FO00689A
  107. Yang, J., Choi, W.S., Kim, J.W., Lee, S.S., Park, M.J. 2019. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species. Journal of the Korean Wood Science and Technology 47(6): 674-691.  https://doi.org/10.5658/WOOD.2019.47.6.674
  108. Yang, J., Choi, W.S., Lee, S.Y., Kim, M., Park, M.J. 2022a. Antioxidant activities of essential oils from Citrus × natsudaidai (Yu. Tanaka) hayata peels at different ripening stage. Journal of the Korean Wood Science and Technology 50(4): 272-282.  https://doi.org/10.5658/WOOD.2022.50.4.272
  109. Yang, J., Lee, S.Y., Na, H., Jang, S.K., Park, M.J. 2022b. Evaluation of anti-asthmatic activity of essential oils from the lauraceae family in lipopolysaccharide (LPS)-stimulated NCI-H292 cells. Journal of the Korean Wood Science and Technology 50(6): 414-426.  https://doi.org/10.5658/WOOD.2022.50.6.414
  110. Yang, Y., Chang, Y., Wu, Y., Liu, H., Liu, Q., Kang, Z., Wu, M., Yin, H., Duan, J. 2021. A homogeneous polysaccharide from Lycium barbarum: Structural characterizations, anti-obesity effects and impacts on gut microbiota. International Journal of Biological Macromolecules 183: 2074-2087.  https://doi.org/10.1016/j.ijbiomac.2021.05.209
  111. Yoon, J., Kim, T.J. 2023. Synergistic growth inhibition of herbal plant extract combinations against Candida albicans. Journal of the Korean Wood Science and Technology 51(2): 145-156.  https://doi.org/10.5658/WOOD.2023.51.2.145
  112. Yuan, Y., Zhou, J., Zheng, Y., Xu, Z., Li, Y., Zhou, S., Zhang, C. 2020. Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomedicine and Pharmacotherapy 127: 110182. 
  113. Zhang, R., Yuan, S., Ye, J., Wang, X., Zhang, X., Shen, J., Yuan, M., Liao, W. 2020. Polysaccharide from Flammuliana velutipes improves colitis via regulation of colonic microbial dysbiosis and inflammatory responses. International Journal of Biological Macromolecules 149: 1252-1261.  https://doi.org/10.1016/j.ijbiomac.2020.02.044
  114. Zhao, D., Dai, W., Tao, H., Zhuang, W., Qu, M., Chang, Y.N. 2020. Polysaccharide isolated from Auricularia auricular-judae (Bull.) prevents dextran sulfate sodium-induced colitis in mice through modulating the composition of the gut microbiota. Journal of Food Science 85(9): 2943-2951.  https://doi.org/10.1111/1750-3841.15319
  115. Zheng, D., Liwinski, T., Elinav, E. 2020. Interaction between microbiota and immunity in health and disease. Cell Research 30(6): 492-506.  https://doi.org/10.1038/s41422-020-0332-7
  116. Zhou, Z., Sun, B., Yu, D., Zhu, C. 2022. Gut microbiota: An important player in type 2 diabetes mellitus. Frontiers in Cellular and Infection Microbiology 12: 834485. 
  117. Zhu, W., Zhou, S., Liu, J., McLean, R.J.C., Chu, W. 2020. Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide. Biomedicine and Pharmacotherapy 121: 109591. 
  118. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., Goodman, A.L. 2019. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570(7762): 462-467.  https://doi.org/10.1038/s41586-019-1291-3