DOI QR코드

DOI QR Code

Experimental and numerical study on aerodynamic characteristics of suspended monorail trains passing each other under crosswinds

  • Yulong Bao (Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University) ;
  • Wanming Zhai (State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University) ;
  • Chengbiao Cai (State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University) ;
  • Shengyang Zhu (State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University) ;
  • Yongle Li (National Key Laboratory of Bridge Intelligent and Green Construction, Southwest Jiaotong University)
  • Received : 2022.09.26
  • Accepted : 2023.10.18
  • Published : 2023.11.25

Abstract

Suspended monorail trains (SMTs) are sensitive to crosswinds, and instantaneous aerodynamic characteristics of two SMTs passing each other under crosswinds are particularly complicated. In this study, a pressure measurement test is carried out on stationary train-bridge models arranged in several critical positions. In addition, a validated moving CFD model is developed with the dynamic and sliding mesh method to explore the realistic train movement effects. The time-varying aerodynamic forces and surface pressure distribution on, as well as the flow field around running trains and bridges during trains passing each other, are computed in detail to illustrate the shielding effect of the upstream train. The results reveal that when two trains begin to pass each other, the side force coefficient of the downstream train reduces significantly to negative values due to the wind shielding effect of the upstream train. The moving model successfully captures that airflow is separated on the middle line of the head car for the suspended monorail train, and the surrounding bluff double-beams can significantly affect the flow structures around the train. The wind shielding effect of the upstream train on the downstream train will weaken as the relative yaw angle decreases.

Keywords

Acknowledgement

The authors are grateful for the financial supports from the National Natural Science Foundation of China (grant number U19A20109, 52108476) and China Postdoctoral Science Foundation (grant number 2020TQ0249), Natural Science Foundation of Sichuan Province (grant number 2022NSFSC1905), Fundamental Research Funds for the Central Universities (grant number 2682022CX059). The content of this paper reflects the views of the authors, who are responsible for the facts and the accuracy of the information presented.

References

  1. Alonso-Estebanez, A., Juan, J., Di, C. and Rabanal, F.P.A. (2018), "Numerical investigation of truck aerodynamics on several classes of infrastructures", Wind Struct., 26, 35-43. https://doi.org/10.12989/was.2018.26.1.035.
  2. Argentini, T., Ozkan, E., Rocchi, D., Rosa, L. and Zasso, A. (2011), "Cross-wind effects on a vehicle crossing the wake of a bridge pylon", J. Wind Eng. Ind. Aerod., 99(6-7), 734-740. https://doi.org/10.1016/j.jweia.2011.01.021.
  3. Baker, C., Cheli, F., Orellano, A., Paradot, N., Proppe, C. and Rocchi, D. (2009), "Cross-wind effects on road and rail vehicles", Veh. Syst. Dyn., 47(8), 983-1022. https://doi.org/10.1080/00423110903078794.
  4. Baker, C.J., Quinn, A., Sima, M., Hoefener, L. and Licciardello, R. (2014a), "Full-scale measurement and analysis of train slipstreams and wakes. Part 1: Ensemble averages", Proc. Inst. Mech. Eng. F. J. Rail Rapid Transit., 228(5), 451-467. https://doi.org/10.1177/0954409713485944.
  5. Baker, C.J., Quinn, A., Sima, M., Hoefener, L. and Licciardello, R. (2014b), "Full-scale measurement and analysis of train slipstreams and wakes. Part 2: Gust analysis. Proc", Inst. Mech. Eng. F. J. Rail Rapid Transit., 228(5), 468-480. https://doi.org/10.1177/0954409713488098.
  6. Bao, Y.L., Xiang, H.Y., Li, Y.L., Yu, C.J. and Wang, Y.C. (2019), "Study of wind-vehicle-bridge system of suspended monorail during the meeting of two trains", Adv. Struct. Eng., 22(8), 1988-1997. https://doi.org/10.1177/1369433219830255.
  7. Bao, Y.L., Zhai, W.M., Cai, C.B., Zhu, S.Y. and Li, Y.L. (2021), "Dynamic interaction analysis of suspended monorail vehicle and bridge subject to crosswinds", Mech. Syst. Signal Process., 156, 107707. https://doi.org/10.1016/j.ymssp.2021.107707.
  8. Bao, Y.L., Zhai, W.M., Cai, C.B., Zhu, S.Y. and Li, Y.L. (2023), "Experimental study on the influence of rolling angle on aerodynamic characteristics of suspended monorail trains", J. Wind Eng. Ind. Aerod., 232, 105289. https://doi.org/10.1016/j.jweia.2022.105289.
  9. Cai, C.B., He, Q.L., Zhu, S.Y., Zhai, W.M. and Wang, M.Z. (2019), "Dynamic analysis on suspension-type monorail vehicle and bridge: Numerical simulation and experiment", Mech. Syst. Signal Process., 118, 388-407. https://doi.org/10.1016/j.ymssp.2018.08.062.
  10. Charuvisit, S., Kimura, K. and Fujino, Y. (2004a), "Effects of wind barrier on a vehicle passing in the wake of a bridge tower in cross wind and its response", J. Wind Eng. Ind. Aerod., 92(7-8), 609-639. https://doi.org/10.1016/j.jweia.2004.03.006.
  11. Charuvisit, S., Kimura, K. and Fujino, Y. (2004b), "Experimental and semi-analytical studies on the aerodynamic forces acting on a vehicle passing through the wake of a bridge tower in cross wind", J. Wind Eng. Ind. Aerod., 92(9), 749-780. https://doi.org/10.1016/j.jweia.2004.04.001.
  12. Cheli, F., Ripamonti, F., Rocchi, D. and Tomasini, G. (2010), "Aerodynamic behaviour investigation of the new EMUV250 train to cross wind", J. Wind Eng. Ind. Aerod., 98(4-5), 189-201. https://doi.org/10.1016/j.jweia.2009.10.015.
  13. Chen, Z.W., Liu, T.H., Li, M., Yu, M., Lu, Z.J. and Liu, D.R. (2019), "Dynamic response of railway vehicles under unsteady aerodynamic forces caused by local landforms", Wind Struct., 29(3), 149-161. https://doi.org/10.12989/was.2019.29.3.149.
  14. Dorigatti, F., Sterling, M., Baker, C.J. and Quinn, A.D. (2015), "Crosswind effects on the stability of a model passenger train-A comparison of static and moving experiments", J. Wind Eng. Ind. Aerod., 138, 36-51. https://doi.org/10.1016/j.jfluidstructs.2017.12.016.
  15. Guo, W.W., Wang, Y.J., Xia, H. and Lu, S. (2015), "Wind tunnel test on aerodynamic effect of wind barriers on vehicle-bridge system", Sci. China Tech. Sci., 58(2), 219-225. https://doi.org/10.1007/s11431-014-5675-1.
  16. He, X.H., Zou, Y.F., Wang, H.F., Han, Y. and Shi, K. (2014), "Aerodynamic characteristics of a trailing rail vehicles on viaduct based on still wind tunnel experiments", J. Wind Eng. Ind. Aerod., 135, 22-33. https://doi.org/10.1016/j.jweia.2014.10.004.
  17. Hemida, H., Baker, C. and Gao, G.J. (2014), "The calculation of train slipstreams using large-eddy simulation", Inst. Mech. Eng. F. J. Rail Rapid Transit., 228(1), 25-36. https://doi.org/10.1177/0954409712460982.
  18. Huang, Z.X., Li, W.H., Liu, T.H. and Chen, L. (2022), "Experimental study on the influence of Reynolds number and roll angle on train aerodynamics", Wind Struct., 35(2), 83-92. https://doi.org/10.12989/was.2022.35.2.083.
  19. Li, H., He, X.H., Hu, L. and Wei, X.J. (2022), "Aerodynamic properties of a streamlined bridge-girder under the interference of trains", Wind Struct., 35(3), 177-191. https://doi.org/10.12989/was.2022.35.3.177.
  20. Li, Y.L., Xiang, H.Y., Wang, B. and Xu, Y.L. (2013), "Dynamic analysis of wind-vehicle-bridge coupling system during the meeting of two trains", Adv. Struct. Eng., 16(10), 1663-1670. https://doi.org/10.1260/1369-4332.16.10.1663.
  21. Wang, B., Xu, Y.L., Zhu, L.D. and Li, Y.L. (2014), "Crosswind effect studies on road vehicle passing by bridge tower using computational fluid dynamics", Eng. Appl. Comp. Fluid., 8(3), 330-344. https://doi.org/10.1080/19942060.2014.11015519.
  22. Wang, H.L. and Zhu, E.Y. (2018), "Dynamic response analysis of monorail steel-concrete composite beam-train interaction system considering slip effect", Eng. Struct., 160, 257-269. https://doi.org/10.1016/j.engstruct.2018.01.037.
  23. Wang, J., Ma, C., Jing, H., Pei, C. and Dragomirescu, E. (2020), "Experimental study on aerodynamic admittance of twin-box bridge decks", J. Wind Eng. Ind. Aerod., 198, 104080. https://doi.org/10.1016/j.jweia.2019.104080.
  24. Wang, J.J., Xia, H., Guo, W.W., Zhang, N. and Wang, S.Q. (2018), "Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind", Wind Struct., 27(1), 29-40. https://doi.org/10.12989/was.2018.27.1.029.
  25. Xiang, H.Y., Li, Y.L., Chen, S.R. and Li C.J. (2017), "A wind tunnel test method on aerodynamic characteristics of moving vehicles under crosswinds", J. Wind Eng. Ind. Aerod., 163, 15-23. https://doi.org/10.1016/j.jweia.2017.01.013.
  26. Xu, Y.L., Zhang, N. and Xia, H. (2004), "Vibration of coupled train and cable-stayed bridge systems in cross winds", Eng. Struct., 26, 1389-1406. https://doi.org/10.1016/j.engstruct.2004.05.005.
  27. Yang, Q.S., Li, D.Y., Hui, Y. and Law, S.S. (2020), "Estimation of extreme wind pressure coefficient in a zone by multivariate extreme value theory", Wind Struct., 31(3), 197-207. https://doi.org/10.12989/was.2020.31.3.197.
  28. Yang, W., Deng, E., He, X., Luo, L., Zhu, Z., Wang, Y. and Li, Z. (2021b), "Influence of wind barrier on the transient aerodynamic performance of high-speed trains under crosswinds at tunnel-bridge sections", Eng. Appl. Comp. Fluid., 15(1), 727-746. https://doi.org/10.1080/19942060.2021.1918257.
  29. Yang, Y., He, Q.L., Cai, C.B., Zhu S.Y. and Zhai, W.M. (2021a), "Coupled vibration analysis of suspended monorail train and curved bridge considering nonlinear wheel-track contact relation", Veh. Syst. Dyn., 60(8), 2658-2685. https://doi.org/10.1080/00423114.2021.1918727.
  30. Yao, Z.Y., Zhang, N., Chen, X.Z., Zhang, C., Xia, H. and Li, X.Z. (2020), "The effect of moving train on the aerodynamic performances of vehicle-bridge system with a crosswind", Eng. Appl. Comp. Fluid., 14(1), 222-235. https://doi.org/10.1080/19942060.2019.1704886.
  31. Zhai, W.M., Yang, J.Z., Zhen, L. and Han, H.Y. (2015), "Dynamics of high-speed train in crosswinds based on an air-train-track interaction model", Wind Struct., 20(2), 143-168. https://doi.org/10.1080/00423114.2019.1605085.
  32. Zhou, P., Qin, D., Zhang, J.Y. and Li, T. (2022), "Aerodynamic characteristics of the evacuated tube maglev train considering the suspension gap", Int. J. Rail. Transp., 10(2), 195-215. https://doi.org/10.1080/23248378.2021.1885514.
  33. Zou, S.M., He, X.H. and Wang, H.F. (2020), "Numerical investigation on the crosswind effects on a train running on a bridge", Eng. Appl. Comp. Fluid., 14(1), 1458-1471. https://doi.org/10.1080/19942060.2020.1832920.
  34. Zou, Y., Liu, Z., Shi, K., Ou, S., He, X., Deng, H. and Zhou, S. (2021), "Experimental study of aerodynamic interference effects for a suspended monorail vehicle-bridge system using a wireless acquisition system", Sensors, 21, 5841. https://doi.org/10.3390/s21175841.
  35. Zou, Y., Liu, Z., Shi, K., Song, J., He, X. and Liu, Q. (2022), "Experimental study of the aerodynamic characteristics of a suspended monorail vehicle-bridge system under crosswinds", Int. J. Struct. Stab. Dyn., 22(10), 2241007. https://doi.org/10.1142/S0219455422410073.