DOI QR코드

DOI QR Code

Unsteady aerodynamic force on a transverse inclined slender prism using forced vibration

  • Zengshun Chen (School of Civil Engineering, Chongqing University) ;
  • Jie Bai (China State Construction Silk Road Investment Group Co., Ltd.) ;
  • Yemeng Xu (School of Civil Engineering, Chongqing University) ;
  • Sijia Li (School of Civil Engineering, Chongqing University) ;
  • Jianmin Hua (School of Civil Engineering, Chongqing University) ;
  • Cruz Y. Li (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology) ;
  • Xuanyi Xue (School of Civil Engineering, Chongqing University)
  • Received : 2022.05.23
  • Accepted : 2023.10.18
  • Published : 2023.11.25

Abstract

This work investigates the effects of transverse inclination on an aeroelastic prism through forced-vibration wind tunnel experiments. The aerodynamic characteristics are tri-parametrically evaluated under different wind speeds, inclination angles, and oscillation amplitudes. Results show that transverse inclination fundamentally changes the wake phenomenology by impinging the fix-end horseshoe vortex and breaking the separation symmetry. The aftermath is a bi-polar, one-and-for-all change in the aerodynamics near the prism base. The suppression of the horseshoe vortex unleashes the Kármán vortex, which significantly increases the unsteady crosswind force. After the initial morphology switch, the aerodynamics become independent of inclination angle and oscillation amplitude and depend solely on wind speed. The structure's upper portion does not feel the effect, so this phenomenon is called Base Intensification. The phenomenon only projects notable impacts on the low-speed and VIV regime and is indifferent in the high-speed. In practice, Base Intensification will disrupt the pedestrian-level wind environment from the unleashed Bérnard-Kármán vortex shedding. Moreover, it increases the aerodynamic load at a structure base by as much as 4.3 times. Since fix-end stiffness prevents elastic dissipation, the load translates to massive stress, making detection trickier and failures, if they are to occur, extreme, and without any warnings.

Keywords

Acknowledgement

The authors appreciate the testing facility, as well as the technical assistance provided by the CLP Power Wind/Wave Tunnel Facility at the Hong Kong University of Science and Technology. The authors also thank the Design and Manufacturing Services Facility (Electrical and Mechanical Fabrication Unit) of the Hong Kong University of Science and Technology for their help in manufacturing the test rig of the forced vibration wind tunnel test system.

References

  1. Abdel-Rohman, M. (2001), "Effect of unsteady wind flow on galloping of tall prismatic structures", Nonlinear Dyn., 26, 233-254.
  2. Bearman, P.W. and Obasaju, E.D. (1982), "An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders", J. Fluid Mech., 119, 297-321. https://doi.org/10.1017/S0022112082001360.
  3. Blevins, R.D. (1977), Flow-Induced Vibration. New York.
  4. Carassale, L., Freda, A. and Marre-Brunenghi, M. (2014), "Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners', J. Fluids Struct., 44, 195-204. https://doi.org/10.1016/j.jfluidstructs.2013.10.010.
  5. Chen, Z., Bai, J., Wang, S., Xue, X., Li, K., Tse, K.T., Li, C.Y. and Lin, C. (2023a), "The role of transverse inclination on the flow phenomenology around cantilevered prisms and the tripole wake mode", J. Fluids Struct., 118, 103837. https://doi.org/10.1016/j.jfluidstructs.2023.103837.
  6. Chen, Z., Fu, X., Xu, Y., Li, C.Y., Kim, B. and Tse, K.T. (2021a), "A perspective on the aerodynamics and aeroelasticity of tapering: Partial reattachment", J. Wind Eng. Ind. Aerod., 212, 104590. https://doi.org/10.1016/j.jweia.2021.104590.
  7. Chen, Z., Huang, H., Tse, K.T., Xu, Y. and Li, C.Y. (2020), "Characteristics of unsteady aerodynamic forces on an aeroelastic prism: A comparative study", J. Wind Eng. Ind. Aerod., 205, 104325. https://doi.org/10.1016/j.jweia.2020.104325.
  8. Chen, Z., Huang, H., Xu, Y., Tse, K.T., Kim, B. and Wang, Y. (2021b), "Unsteady aerodynamics on a tapered prism under forced excitation", Eng. Struct., 240, 112387. https://doi.org/10.1016/j.engstruct.2021.112387.
  9. Chen, Z., Li, D., Li, S., Bai, J., Fu, X., Li, C.Y., Wang, H., Fu, Y. and Tse, K.T. (2023b), "Experimental and numerical investigation on the aerodynamics of isolated high-rise building and phenomenology of twisted wind field", Eng. Appl. Comput. Fluid Mech., 17, 2264351. https://doi.org/10.1080/19942060.2023.2264351
  10. Chen, Z., Tse, K.T. and Kwok, K.C.S. (2017), "Unsteady pressure measurements on an oscillating slender prism using a forced vibration technique", J. Wind Eng. Ind. Aerod., 170, 81-93. https://doi.org/10.1016/j.jweia.2017.08.004.
  11. Chen, Z., Tse, K.T., Hu, G. and Kwok, K.C.S. (2018a), "Experimental and theoretical investigation of galloping of transversely inclined slender prisms", Nonlinear Dyn., 91, 1023-1040. https://doi.org/10.1007/s11071-017-3926-y.
  12. Chen, Z., Tse, K.T., Kwok, K.C.S. and Kareem, A. (2018b), "Aerodynamic damping of inclined slender prisms", J. Wind Eng. Ind. Aerod., 177, 79-91. https://doi.org/10.1016/j.jweia.2018.04.016.
  13. Chen, Z., Tse, K.T., Kwok, K.C.S., Kareem, A. and Kim, B. (2021), "Measurement of unsteady aerodynamic force on a galloping prism in a turbulent flow: A hybrid aeroelastic-pressure balance", J. Fluids Struct., 102, 103232. https://doi.org/10.1016/j.jfluidstructs.2021.103232.
  14. Chen, Z., Wang, Y., Wang, S., Huang, H., Tse, K.T., Li, C.Y. and Lin, C. (2022), "Decoupling bi-directional fluid-structure interactions by the Koopman theory: Actualizing one-way subcases and the role of crosswind structure motion", Phys. Fluids, 34, 095103. https://doi.org/10.1063/5.0101749.
  15. Cooper, K.R., Nakayama, M., Sasaki, Y., Fediw, A.A., Resende-Ide, S. and Zan, S.J. (1997), "Unsteady aerodynamic force measurements on a super-tall building with a tapered cross section", J. Wind Eng. Ind. Aerod., 72, 199-212. https://doi.org/10.1016/S0167-6105(97)00258-4.
  16. Dai, H.L., Abdelkefi, A., Wang, L. and Liu, W.B. (2014), "Control of cross-flow-induced vibrations of square cylinders using linear and nonlinear delayed feedbacks", Nonlinear Dyn., 78, 907-919. https://doi.org/10.1007/s11071-014-1485-z.
  17. Dai, H.L., Abdelmoula, H., Abdelkefi, A. and Wang, L. (2017), "Towards control of cross-flow-induced vibrations based on energy harvesting", Nonlinear Dyn. 88, 2329-2346. https://doi.org/10.1007/s11071-017-3380-x.
  18. Flemming, F. and Williamson, C.H.K. (2005), "Vortex-induced vibrations of a pivoted cylinder", J. Fluid Mech., 522, 215-252. https://doi.org/10.1017/S0022112004001831.
  19. Fu, Y., Lin, X., Li, L., Chu, M., Liu, C.-H., Chen, Z., Li, C.Y. and Tse, K.T. (2023a), "The NOx-O3 photochemical reactive air pollutant dispersion around an isolated building-the role of turbulence model and building aspect ratio", Build. Environ., 245, 110906. https://doi.org/10.1016/j.buildenv.2023.110906.
  20. Fu, Y., Lin, X., Li, L., Chu, Q., Liu, H., Zheng, X., Liu, C.-H., Chen, Z., Lin, C., Tse, T.K.T. and Li, C.Y. (2023b), "A PODDMD augmented procedure to isolating dominant flow field features in a street canyon", Phys. Fluids, 35, 025112. https://doi.org/10.1063/5.0133375.
  21. Fu, Y., Lin, X., Zheng, X., Wang, L., Liu, C.-H., Zhang, X., Li, C.Y. and Tse, K.T. (2023c), "Physio-chemical modeling of the NOx-O3 photochemical cycle and the air pollutants' reactive dispersion around an isolated building", Build. Simul. 16, 1735-1758. https://doi.org/10.1007/s12273-023-1042-0.
  22. He, Y., Zhang, L., Chen, Z. and Li, C.Y. (2022), "A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network", Eng. Comput., https://doi.org/10.1007/s00366-021-01584-4.
  23. Holmes, J.D. (2018), Wind Loading of Structures, CRC Press. https://doi.org/10.1201/b18029
  24. Hu, G., Tse, K.T. and Kwok, K.C.S. (2015), "Galloping of forward and backward inclined slender square cylinders", J. Wind Eng. Ind. Aerod., 142, 232-245. https://doi.org/10.1016/j.jweia.2015.04.010.
  25. Hu, G., Tse, K.T. and Kwok, K.C.S. (2016), "Aerodynamic mechanisms of galloping of an inclined square cylinder", J. Wind Eng. Ind. Aerod., 148, 6-17. https://doi.org/10.1016/j.jweia.2015.10.011.
  26. Hu, G., Tse, K.T., Chen, Z.S. and Kwok, K.C.S. (2017), "Particle image velocimetry measurement of flow around an inclined square cylinder", J. Wind Eng. Ind. Aerod., 168, 134-140. https://doi.org/10.1016/j.jweia.2017.06.001.
  27. Hu, Gang, Tse, K.T., Kwok, K.C.S. and Chen, Z.S. (2015), "Pressure measurements on inclined square prisms", Wind Struct., 21, 383-405. https://doi.org/10.12989/WAS.2015.21.4.383.
  28. Hui, Y., Yuan, K., Chen, Z. and Yang, Q. (2019), "Characteristics of aerodynamic forces on high-rise buildings with various facade appurtenances", J. Wind Eng. Ind. Aerod., 191, 76-90. https://doi.org/10.1016/j.jweia.2019.06.002.
  29. Kareem, A. (1990), "Measurements of pressure and force fields on building models in simulated atmospheric flows", Sixth US Natl. Conf. Wind Eng., 36, 589-599. https://doi.org/10.1016/0167-6105(90)90341-9.
  30. Kareem, A. and Cermak, J.E. (1984), "Pressure fluctuations on a square building model in boundary-layer flows", J. Wind Eng. Ind. Aerod., 16, 17-41. https://doi.org/10.1016/0167-6105(84)90047-3.
  31. Kim, Y.C., Lo, Y.L. and Chang, C.H. (2018), "Characteristics of unsteady pressures on slender tall building", J. Wind Eng. Ind. Aerod., 174, 344-357. https://doi.org/10.1016/j.jweia.2018.01.027.
  32. Li, C.Y., Chen, Z., Tse, T.K.T., Weerasuriya, A.U., Zhang, X., Fu, Y. and Lin, X. (2023a), "The linear-time-invariance notion of the Koopman analysis. Part 2. Dynamic Koopman modes, physics interpretations and phenomenological analysis of the prism wake", J. Fluid Mech., 959, A15. https://doi.org/10.1017/jfm.2023.36.
  33. Li, C.Y., Chen, Z., Tse, T.K.T., Weerasuriya, A.U., Zhang, X., Fu, Y. and Lin, X. (2022), "A parametric and feasibility study for data sampling of the dynamic mode decomposition: range, resolution, and universal convergence states", Nonlinear Dyn., https://doi.org/10.1007/s11071-021-07167-8.
  34. Li, C.Y., Chen, Z., Tse, T.K.T., Weerasuriya, A.U., Zhang, X., Fu, Y. and Lin, X. (2021a), "Establishing direct phenomenological connections between fluid and structure by the Koopman-Linearly Time-Invariant analysis", Phys. Fluids, 33, 121707. https://doi.org/10.1063/5.0075664.
  35. Li, C.Y., Chen, Z., Tse, T.K.T., Weerasuriya, A.U., Zhang, X., Fu, Y. and Lin, X. (2021b), "Spectral characterization by the Koopman linearly-time-invariant analysis: constitutive fluid-structure correspondence", ArXiv211202985 Phys.
  36. Li, C.Y., Chen, Z., Tse, T.K.T., Weerasuriya, A.U., Zhang, X., Fu, Y. and Lin, X. (2021c), "Spectral characterization by the Koopman linearly-time-invariant analysis: phenomenological fluid-structure correspondence and its Origins", ArXiv211203029 Phys.
  37. Li, C.Y., Chen, Z., Weerasuriya, A.U., Zhang, X., Lin, X., Zhou, L., Fu, Y. and Tse, T.K.T. (2023b), "Best practice guidelines for the dynamic mode decomposition from a wind engineering perspective", J. Wind Eng. Ind. Aerod., 241, 105506. https://doi.org/10.1016/j.jweia.2023.105506.
  38. Li, C.Y., Chen, Z., Zhang, X., Tse, T.K.T. and Lin, C. (2023c), "Koopman analysis by the dynamic mode decomposition in wind engineering", J. Wind Eng. Ind. Aerod., 232, 105295. https://doi.org/10.1016/j.jweia.2022.105295.
  39. Li, Cruz Y, Tse, T. and Hu, G. (2020), Reconstruction of flow field around a square prism using dynamic mode decomposition, in: The 4th Hong Kong Wind Engineering Society Workshop.
  40. Li, Cruz Y., Tse, T.K.T. and Hu, G. (2020), "Dynamic mode decomposition on pressure flow field analysis: Flow field reconstruction, accuracy, and practical significance", J. Wind Eng. Ind. Aerod., 205, 104278. https://doi.org/10.1016/j.jweia.2020.104278.
  41. Lin, N., Letchford, C., Tamura, Y., Liang, B. and Nakamura, O. (2005), "Characteristics of wind forces acting on tall buildings", J. Wind Eng. Ind. Aerod., 93, 217-242. https://doi.org/10.1016/j.jweia.2004.12.001.
  42. Mannini, C., Marra, A.M. and Bartoli, G. (2015a), "Experimental investigation on VIV-galloping interaction of a rectangular 3:2 cylinder", Meccanica, 50, 841-853. https://doi.org/10.1007/s11012-014-0025-8.
  43. Mannini, C., Marra, A.M. and Bartoli, G. (2015b), "Experimental investigation on VIV-galloping interaction of a rectangular 3:2 cylinder", Meccanica, 50, 841-853. https://doi.org/10.1007/s11012-014-0025-8.
  44. Mannini, C., Massai, T., Maria Marra, A. and Bartoli, G. (2017), "Interference of vortex-induced vibration and galloping: Experiments and Mathematical Modelling", Procedia Eng., 199, 3133-3138. https://doi.org/10.1016/j.proeng.2017.09.566.
  45. Paidoussis, M.P., Price, S.J. and Langre, E. de, (2013), Fluid-structure interactions: cross-flow-induced instabilities. Cambridge University Press, Cambridge.
  46. Parkinson, G. (1989), "Phenomena and modelling of flow-induced vibrations of bluff bodies", Prog. Aerosp. Sci., 26, 169-224. https://doi.org/10.1016/0376-0421(89)90008-0.
  47. Raissi, M., Wang, Z., Triantafyllou, M.S. and Karniadakis, G.E. (2019), "Deep learning of vortex-induced vibrations", J. Fluid Mech., 861, 119-137. https://doi.org/10.1017/jfm.2018.872.
  48. Steckley, A., Vickery, B.J. and Isyumov, N. (1990), "On the measurement of motion induced forces on models in turbulent shear flow", J. Wind Eng. Ind. Aerod., 36, 339-350. https://doi.org/10.1016/0167-6105(90)90318-7.
  49. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Chul Kim, Y. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
  50. Unal, M.F. and Rockwell, D. (1988a), "On vortex formation from a cylinder. Part 1. The initial instability", J. Fluid Mech., 190, 491-512. https://doi.org/10.1017/S0022112088001429.
  51. Unal, M.F. and Rockwell, D. (1988b), "On vortex formation from a cylinder. Part 2. Control by splitter-plate interference", J. Fluid Mech., 190, 513-529. https://doi.org/10.1017/S0022112088001430.
  52. Vickery, B.J. and Steckley, A. (1993), "Aerodynamic damping and vortex excitation on an oscillating prism in turbulent shear flow", J. Wind Eng. Ind. Aerod., 49, 121-140. https://doi.org/10.1016/0167-6105(93)90009-D.
  53. Wang, Y., Liu, H., Lei, M., Chen, Z., Tse, T.K.T., Li, C.Y. and Fu, Y. (2023), "Aerodynamic analysis of an ultra-long and ultra- wide industrial building under wind loading: Insights into flow dynamics and pressure distribution characteristics", J. Build. Eng., 76, 107144. https://doi.org/10.1016/j.jobe.2023.107144.
  54. Williamson, C.H.K. and Roshko, A. (1988), "Vortex formation in the wake of an oscillating cylinder", J. Fluids Struct., 2, 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8.
  55. Xu, Y., Li, C.Y., Chen, Z., Tse, K.T., Huang, L., Xue, X., Hua, J. and Fu, Y. (2023), "Isolation, decomposition, and mechanisms of the aerodynamic nonlinearity and flow field phenomenology of structure-motion-induced dynamics in fluid-structure interactions", Phys. Fluids, 35, 047125. https://doi.org/10.1063/5.0147851.
  56. Zhang, X., Weerasuriya, A.U., Wang, J., Li, C.Y., Chen, Z., Tse, K.T. and Hang, J. (2022), "Cross-ventilation of a generic building with various configurations of external and internal openings", Build. Environ., 207, 108447. https://doi.org/10.1016/j.buildenv.2021.108447.
  57. Zhang, Xinyue, Weerasuriya, A.U., Zhang, Xuelin, Tse, K.T., Lu, B., Li, C.Y. and Liu, C.-H. (2020), "Pedestrian wind comfort near a super-tall building with various configurations in an urban-like setting", Build. Simul., 13, 1385-1408. https://doi.org/10.1007/s12273-020-0658-6.
  58. Zou, L., Li, F., Song, J., Shi, T., Liang, S. and Mercan, O. (2020), "Investigation of torsional aeroelastic effects on high-rise buildings using forced vibration wind tunnel tests", J. Wind Eng. Ind. Aerod., 200, 104158. https://doi.org/10.1016/j.jweia.2020.104158.