DOI QR코드

DOI QR Code

Effect of Ni-Ti shape memory alloy on ductility and response modification factor of SPSW systems

  • Received : 2022.05.04
  • Accepted : 2023.07.20
  • Published : 2023.08.10

Abstract

Shape memory alloys (SMAs) have emerged as a novel functional material that is being increasingly applied in diverse fields including medical, aeronautical and structural engineering to be used in the active, passive and semi-active structural control devices. This paper is mainly aimed at evaluating the ductility and response modification factor of the steel plate shear wall (SPSW) frames with and without the Ni-Ti shape memory alloys. To this end, different configurations were utilized, in which the walls were used in the first, third, middle, and all stories. The models were numerically analyzed using OpenSees Software. The obtained results indicate that improving the shape memory properties of alloys can greatly enhance the ductility and response modification factor. Furthermore, the model whose first and third stories are equipped with the SMA shear wall was found to be 290% more ductile, with a greater response modification factor compared to the unequipped frame.

Keywords

References

  1. Abdulridha, A. and Palermo, D. (2017), "Behaviour and modelling of hybrid SMA-steel reinforced concrete slender shear wall", Eng. Struct., 147, 77-89, https://doi.org/10.1016/j.engstruct.2017.04.058.
  2. Araki, Y., Shrestha, K.C., Maekawa, N., Koetaka, Y., Omori, T. and Kainuma, R. (2016), "Shaking table tests of steel frame with superelastic Cu-Al-Mn SMA tension braces", Earthq. Eng. Struct. Dyn., 45, 297-314. https://doi.org/10.1002/eqe.2659.
  3. Asgarian, B. and Moradi, S. (2011), "Seismic response of steel braced frames with shape memory alloy braces", J. Constr. Steel Res., 67(1), 65-74. https://doi.org/10.1016/j.jcsr.2010.06.006.
  4. Chang, W.S. and Araki, Y. (2016), "Use of shape-memory alloys in construction: a critical review", Proceedings of the Institution of Civil Engineers-Civil Engineering, 169(2), 87-95. https://doi.org/10.1680/jcien.15.00010.
  5. Chowdhury, M.A., Rahmzadeh, A., Moradi, S. and Alam M.S. (2019). "Feasibility of using reduced length superelastic shape memory alloy strands in post-tensioned steel beam-column connections", J. Intell. Mater. Syst. Struct., 30(2), 283-307. https://doi.org/10.1177/1045389X18806393.
  6. Corbi, O. (2003), "Influence of SMAs on the attenuation of effects of P-Δ type in shear frames", Steel Compos. Struct., 3(6), 403-420. https://doi.org/10.12989/scs.2003.3.6.403.
  7. Cortes-Puentes, W.L. and Palermo, D. (2017), "SMA tension brace for retrofitting concrete shear walls", Eng. Struct. 140, 177-188. https://doi.org/10.1016/j.engstruct.2017.02.045.
  8. Dieng, L. Helbert, G., Arbab Chirani, S., Lecompte, T. and Pilvin, P. (2013), "Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables", Eng Struct. 56, 1547-1556. https://doi.org/10.1016/j.engstruct.2013.07.018.
  9. Meshaly, M.E., Youssef, M.A. and Abou Elfath, H.M. (2014), "Use of SMA bars to enhance the seismic performance of SMA braced RC frames", 6(3), 267-280. https://doi.org/10.12989/eas.2014.6.3.267.
  10. Fang, C., Wang, W., He, C. and Chen, Y. (2017), "Self-centring behaviour of steel and steel-concrete composite connections equipped with NiTi SMA bolts", Eng Struct., 150. 390-408. https://doi.org/10.1016/j.engstruct.2017.07.067.
  11. Fang, C., Wang, W., He, C. and Chen, Y. (2014), "Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts", J. Constr Steel Res., 94, 122-136. https://doi.org/10.1016/j.jcsr.2013.11.008.
  12. Gholhaki, M., Pachideh, G. and Javahertarash, A. (2020), "Capacity spectrum of SPSW using pushover and energy method without need for calculation of target point", Structures, 26, 516-523. https://doi.org/10.1016/j.istruc.2020.04.028
  13. Gholhaki, M., Karimi, M. and Pachideh, G. (2019) "Investigation of Subpanel Size Effect on Behavior Factor of Stiffened Steel Plate Shear Wall", J. Struct. Construct. Eng., 5(4), 73-87. https://doi.org/10.22065/jsce.2017.86522.1198.
  14. Habashi, H.R., Alinia, M.M. (2010), "Characteristics of the wall-frame interaction in steel plate shear walls", J. Construct. Steel Res., 66(2), 150-158. https://doi.org/10.1016/j.jcsr.2009.09.004.
  15. Haque, A.B.M.R., Issa, A. and Alam, M.S. (2019), "Superelastic shape memory alloy flag-shaped hysteresis model with sliding response from residual deformation: Experimental and numerical study", J. Intel. Mater. Syst. Struct., 30(12), 1823-1849. https://doi.org/10.1177/1045389X19844328.
  16. Hedayati Dezfuli, F. and Shahria Alam, M. (2013), "Shape memory alloy wire-based smart natural rubber bearing", Smart Mater Struct. 22(4), 045013. https://doi.org/10.1088/0964-1726/22/4/045013.
  17. Hu, J.W., Noh, M.H. and Ahn, J.H. (2018), "Experimental investigation on the behavior of bracing damper systems by utilizing metallic yielding and re-centering material devices", Adv. Mater. Sci. Eng., 2018, 1-15. https://doi.org/10.1155/2018/2813058.
  18. Issa, A.S. and Alam, M.S. (2020), "Comparative seismic fragility assessment of buckling restrained and self-centering (friction spring and SMA) braced frames", Smart Mater. Struct., 29(5), 055029. https://doi.org/10.1088/1361-665X/ab7858.
  19. Issa, A.S. and Alam, M.S. (2019), "Experimental and numerical study on the seismic performance of a self-centering bracing system using closed-loop dynamic (CLD) testing", Eng. Struct., 195. 144-158. https://doi.org/10.1016/j.engstruct.2019.05.103.
  20. Jennings, E. and van de Lindt, J.W. (2014), "Numerical retrofit study of light-frame wood buildings using shape memory alloy devices as seismic response modification devices", J. Struct. Eng. 140(7), 4014041. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000953.
  21. Leon, R. and Gao, Y. (2016), "Resiliency of steel and composite structures", Front Struct Civ Eng., 10(3), 239-253. https://doi.org/10.1007/s11709-016-0349-7.
  22. Massah, S.R. and Dorvar, H. (2014), "Design and analysis of eccentrically braced steel frames with vertical links using shape memory alloys", Smart Mater Struct. 23(11), 115015. DOI:10.1088/0964-1726/23/11/115015.
  23. M. Halahla, A., B. Abu Tahnat, Y. and B. Dwaikat, M. (2022), "Analysis of beam-column joints reinforced with SMAs under monotonous loading with existence of transverse beam", Earthq. Struct., 22(3), 231-243, https://doi.org/10.12989/eas.2022.22.3.231.
  24. Moradi, S. and Shahria Alam, M. (2015), "Feasibility study of utilizing superelastic shape memory alloy plates in steel beam-column connections for improved seismic performance", J. Intel. Mater. Syst. Struct., 26(4), 463-475. https://doi.org/10.1177/1045389X14529032.
  25. Newmark, N.M. and Hall, W.J. (1982), Earthquake Spectra and Design. Engineering monographs on earthquake criteria.
  26. Ozbulut, O. and Hurlebaus, S. (2010), "Seismic assessment of bridge structures isolated by a shape memory alloy/rubber-based isolation system", Smart Mater Struct. 20(1), 015003, https://doi.org/10.1088/0964-1726/20/1/015003.
  27. Parulekar, Y.M., Ravi Kiran, A., Rami Reddy, G., Singh, R.K. and Vaze, K.K. (2014), "Shake table tests and analytical simulations of a steel structure with shape memory alloy dampers", Smart Mater Struct. 23(12), 125002. https://doi.org/10.1088/0964-1726/23/12/125002.
  28. Yam, M.C.H. Fang, C., C.C. Lam, A. and Zhang, Y. (2015), "Numerical study and practical design of beam-to-column connections with shape memory alloys", J Constr Steel Res., 104, 177-192. https://doi.org/10.1016/j.jcsr.2014.10.017.
  29. Zhu, S. and Zhang, Y. (2008), "Seismic analysis of concentrically braced frame systems with self-centering friction damping braces", J. Struct. Eng. 134(1), 121-131. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(121).
  30. Pachideh, G., Gholhaki, M., Yadegari, A. and Shiri, M. (2016), "Modeling and analysis on thin steel plate shear wall using the new method", 2nd International Conference on Civil Engineering, Architecture & Urban Planning elites, 2, 124-136.
  31. Preciado, A., Ramirez-Gaytan, A., Gutierrez, N., Vargas, D., Falcon, J.M. and Ochoa, G. (2018), "Nonlinear earthquake capacity of slender old masonry structures prestressed with steel, FRP and NiTi SMA tendons", Steel Compos. Struct., 26(2), 213-226. https://doi.org/10.12989/scs.2018.26.2.213.
  32. Rafiqul Haque, A.B.M. and Alam, M.S. (2017). "Hysteretic Behavior of a Piston Based Self-centering (PBSC) bracing system made of superelastic SMA bars - A feasibility study", Structures, 12, 102-114. https://doi.org/10.1016/j.istruc.2017.08.004.
  33. Sabouri-Ghomi, S. and Gholhaki, M. (2006), "Cyclic tests on two specimens of three-story ductile steel plate shear wall", Rep. Submitt. to Build. Hous. Res. Cent.
  34. Shahnewaz, M.D., and Shahria Alam, M. (2015), "Seismic Perforamnce of Reinforced Concrete Wall with Superealstic Shape Memory Alloy Rebar", Structures Congress, Portland, Oregon, https://doi.org/10.1061/9780784479117.193.
  35. Shahverdi, M., Czaderski, C. and Motavalli, M. (2016), "Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams", Constr Build Mater. 112, 28-38. https://doi.org/10.1016/j.conbuildmat.2016.02.174.
  36. Torra, V., Auguet, C., Isalgue, A., Carreras, G. Terriault, P. and Lovey, F.C. (2013), "Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: a mesoscopic and macroscopic experimental analysis with numerical simulations", Eng Struct. 49, 43-57. https://doi.org/10.1016/j.engstruct.2012.11.011.
  37. Vian, D. Bruneau, B., Tsai, K.C. and Lin, Y.C. (2009), "Special perforated steel plate shear walls with reduced beam section anchor beams. I: Experimental investigation", J. Struct. Eng. 135(3), 211-220. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(211).
  38. Wang, W., Chan, T.M. and Shao, H. (2015), "Seismic performance of beam-column joints with SMA tendons strengthened by steel angles", J Constr Steel Res. 109, 61-71. https://doi.org/10.1016/j.jcsr.2015.02.011.
  39. Wang, W., Chan, T.M., Shao, H. and Chen, Y. (2015), "Cyclic behavior of connections equipped with NiTi shape memory alloy and steel tendons between H-shaped beam to CHS column", Eng Struct., 88, 37-50. https://doi.org/10.1016/j.engstruct.2015.01.028.
  40. Wang, W., Fang, C. and Liu, J. (2017), "Self-centering beam-to-column connections with combined superelastic SMA bolts and steel angles", J Struct Eng. 143(2), 04016175, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001675.
  41. Wei, M.W., Liew, Y.J.R. and Fu, X.Y. (2017), "Panel action of novel partially connected buckling-restrained steel plate shear walls", J. Constr. Steel Res. 128, 483-497. https://doi.org/10.1016/j.jcsr.2016.09.008.
  42. Yadegari, A., Pachideh, G., Gholhaki, M. and Shiri, M. (2016). "Seismic Performance of C-SPSW", 2nd International Conference on Civil Engineering, Architecture & Urban Planning Elites, 2. 110-123.
  43. Yang, T., Yuan, X., Zhong, J. and Yuan, W. (2023). "Near-fault pulse seismic ductility spectra for bridge columns based on machine learning", Soil Dyn. Earthq. Eng., 164, 107582. https://doi.org/10.1016/j.soildyn.2022.107582.
  44. Zareie, S., Issa, A.S. and J. Seethaler, R. (2020). "Abolghassem Zabihollah, Recent advances in the applications of shape memory alloys in civil infrastructures: A review", Structures, 27, 1535-1550. https://doi.org/10.1016/j.istruc.2020.05.058.