Acknowledgement
This work was financially supported by the Iran National Science Foundation (INSF), Project no. 96011912.
References
- Abrate, S. (2011), Impact Engineering of Composite Structures, Springer-Verlag Wien, Lincoln Drive, Carbondale, USA. https://doi.org /10.1007/978-3-7091-0523-8.
- Aghaei, M., Forouzan, MR., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low-velocity impact", Steel Compos. Struct., 18(5), 1291-1303. http://dx.doi.org/10.12989/scs.2015.18.5.1291.
- Allix, O., Bahlouli, N., Cluzel, C. and Perrt, L. (1996), "Modelling and identification of temperature-dependent mechanical behaviour of the elementary ply in carbon/epoxy laminates", Compos. Sci. Technol., 56(7), 883-888. https://doi.org/10.1016/0266-3538(96)00036-X.
- Andrew, J.J., Srinivasan S.M., Arockiarajan, A. and Dhakal, H.N. (2019), "Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review", Compos. Struct., 224, 111007. https://doi.org/10.1016/j.compstruct.2019.111007.
- ASTM International., D7136/D7136M - 15. (2011), "Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event", Am Stand Test.
- Azizi, A., Khalili, S.M.R. and Fard, K.M. (2018), "Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping", Steel Compos. Struct., 26(6), 771-779. http://dx.doi.org/10.12989/scs.2018.26.6.771.
- Budhoo, Y., Liaw, B., Delaleb, F., Iyer, R. and Raju, B. (2011), "Temperature effect on drop-weight impact of woven composites", Dyn. Behavior Mater., 1, 443-453. https://doi.org/10.1007/978-1-4614-0216-9_62.
- Callus, P.J. (2005), Study of the Equivalence of Hot/dry and Hot/wet Testing, Defence Science and Technology Organization Victoria (Australia) Air Vehicles Div, April.
- Cheng, X., Zhao, W., Liu, S., Xu, Y. and Bao, J. (2014), "Damage of scarf-repaired composite laminates subjected to low-velocity impacts", Steel Compos. Struct., 17(2), 199-213. https://doi.org/10.12989/scs.2014.17.2.199.
- Dutta, PK. and Hui, D. (1996), "Low-temperature and freeze-thaw durability of thick composites", Compos. Part B Eng., 27(3-4), 371. https://doi.org/10.1016/1359-8368(96)00007-8.
- Fakhreddini-Najafabadi, S., Torabi, M., Taheri-Behrooz, F. (2021), "An experimental investigation on the low-velocity impact performance of the CFRP filled with nanoclay", Aero. Sci. Technol., 106858. https://doi.org/10.1016/j.ast.2021.106858.
- Fiedler, B., Hobbiebrunken, T., Hojo, M. and Schulte, K. (2005), "Influence of stress state and temperature on the strength of epoxy resins", Proceedings of the 11th International Conference on Fracture (ICF 11), Turin, Italy, March.
- Ghajar, R. and Rassaf, A. (2014), "Effect of impact and shape and tempreature on the behavior of glass/epoxy composite laminates", Modares Mech. Eng., 14(10), 1-8. https://doi.org/20.1001.1.10275940.1393.14.10.1.8. 1001.1.10275940.1393.14.10.1.8
- Ghasemi, AR. and Khabaz Kashani, H. (2019), "Analysis of circular hole and thermal cycle effects on the mechanical properties in multi-layer polymer composite reinforced with nanoparticles", Modares Mech. Eng., 19(1), 229-236. https://doi.org/ 20.1001.1.10275940.1397.19.1.12.2. 1001.1.10275940.1397.19.1.12.2
- Ghasemi, H. and Baghersad, R. (2012), "Analytical and experimental study of nonlinear behavior and failure coefficient of composite multilayers due to cyclic thermal loading", Iran. Mag. Aviat. Eng., October.
- Ghelli, D., Cantarini, V. and Troiani, E. (2014), "Influence of thermal cycling on the low velocity Impact response of CFRP laminate", 16TH European Conference On Composite Materials, Seville, Spain, June.
- Gower, MRL., Shaw, RM. And Sims, GD. (2005), "Evaluation of the repeatability under static loading of a compression-after-impact test method proposed for ISO standardisation", DEPC-MN 0362005.
- HEXIONTM. EPIKOTE TM Resin L20 and EPIKURETM Curing Agent 960 data sheet, (2004), 1-4.
- Hiremath, V.S. and Reddy, D.M. (2022), "Effect of ply orientation and laminate thickness on carbon fibre reinforced polymers under low-velocity impact", Mater. Sci. Eng. Technol., 53(10), 1290-1297. https://doi.org/10.1002/mawe.202200087.
- Huang, D.D., Xu, F., Du, X.S., Lee, Z.H. and Wang, X.J. (2017), "Temperature effects on rigid nano-silica and soft nano-rubber toughening in epoxy under impact loading", Appl. Polymer Sci., 134(38), 45319. https://doi.org/10.1002/app.45319.
- Icten, BM., Atas, C., Aktas, M. and Karakuzu, R. (2009), "Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates", Compos. Struct., 91(3), 318-323. https://doi.org/10.1016/j.compstruct.2009.05.010.
- Kasap, S.O., Yannacopoulos, S., Mirchandani, V. and Hildebrandt, J.R. (1992), "Ultrasonic evaluation of thermal fatigue of composites", J. Eng. Mater., ASME., 132-136. https://doi.org/10.1115/1.2904151.
- Kevin, D., Cowley, PW. and Beaumont, R. (1997), "The interlaminar and intralaminar fracture toughness of carbon-fibre/polymer composites: The effect of temperature", Compos. Sci. Technol., 57, 1433-1444. https://doi.org/10.1016/S0266-3538(97)00047-X.
- Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. http://dx.doi.org/10.12989/scs.2014.17.4.387.
- Kim, H.S., Wang, W.X. and Takao, Y. (2000), "Effects of temperature and stacking sequence on the mode I interlaminar fracture behavior of composite laminates", Key Eng. Mater., 183-187. https://doi.org/10.4028/www.scientific.net/KEM.183-187.815.
- Korbelin, J., Derra, M. and Fiedler, B. (2018), "Influence of temperature and impact energy on low velocity impact damage severity in CFRP", Composites Part A Appl. Sci. Manufact., 115, 76-87. https://doi.org/10.1016/j.compositesa.2018.09.010.
- Korbelin, J., Dreiner, C. and Fiedler, B. (2020), "Impact of temperature on LVI damage and tensile and compressive residual strength of CFRP", Compos. Part C, 3, 100074. https://doi.org/10.1016/j.jcomc.2020.100074.
- McGowan, D.M. and Ambur, D.R. (1997), Compression Response of a Sandwich Fuselage Keel Panel with and without Damage, Langley Research Center, Virginia, USA.
- Moreno, I., Caminero, M., Rodriguez, GP. and Lopez-Cela, J.J. (2019), "Effect of themal ageing on the impact and flexural damage behaviour of carbon fibre-reinforced epoxy laminate", Polymers., 11(1), 80-91. https://doi.org/10.3390/polym11010080.
- Ozdemir, Z. and Turkbas, O. (2015), Compression After Impact (CAI) Performance of Prepreg Carbon Fiber Reinforced Polymers (CFRP) at Different Temperatures, Engineering Research Technology, July.
- Papa, L., Langella, A. and Lopresto, V. (2019), "CFRP laminates under low-velocity impact conditions: Influence of matrix and temperature", Polymer Eng. Sci., 52(12), 2429-2437. https://doi.org/10.1002/pen.25102.
- Patil, S. and Reddy, D.M. (2018), "Low velocity impact analysis on composite structures - A review", AIP Conference Proceedings 1943, 020009, https://doi.org/10.1063/1.5029585
- Patil, S. and Reddy, D.M., (2020), "Impact damage assessment in carbon fiber reinforced composite using vibration-based new damage index and ultrasonic C-scanning method", Structures, 28, 638-650, https://doi.org/10.1016/j.istruc.2020.09.011.
- Petersen, D., Rolfes, R. and Zimmermann, R. (2001), "Thermomechanical design aspects for primary composite structures of large transport aircraft", Aeros. Sci. Technol., 5(2), 135-146. https://doi.org/10.1016/S1270-9638(00)01089-0.
- Ricciardi, M.R., Papa, I., Imperaro, F., Langella, A., Lopersto, V. and Antonucci, V. (2020), "Low-temperature effect on the impact and flexural behaviour of basalt composite laminates", Compos. Struct., 249, 112607. https://doi.org/10.1016/j.compstruct.2020.112607.
- Richardson, M. and Wisheart, M.J. (1996), "Review of low-velocity impact properties of composite materials", Composites. Part A: Appl. Sci. Manufact., 27(12), 1123-1131. https://doi.org/10.1016/1359-835X(96)00074-7.
- Rivallant, S., Bouvet, C. and Hongkarnjanakul, N. (2013), "Failure analysis of CFRP laminates subjected to compression after impact FE simulation using discrete interface elements", Compos. Part A Appl. Sci. Manufact., 55, 83-93. https://doi.org/10.1016/j.compositesa.2013.08.003.
- Soutis, C. and Turkmen, D. (1997), "Moisture and temperature effects of the compressive failure of CFRP unidirectional laminates", J. Compos. Mater., 31, 832-849. https://doi.org/10.1177/002199839703100805.
- Suresh Kumar, C., Dhakal, A., Arumgum, V. and John, R. (2015), "Effect of temperature and hybridisation on the Low velocity impact behavior of hemp-basalt/epoxy composites", Compos. Struct., 125, 407-416. https://doi.org/10.1016/j.compstruct.2015.01.037.
- Suvarna, R., Arumugam, V., Bull, D.J., Chambers, A.R. and Santulil, C. (2014), "Effect of temperature on low velocity impact damage and post-impact flexural strength of CFRP assessed using ultrasonic C-scan and micro-focus computed tomograph", Compos. Part B Eng., 66, 58-64. https://doi.org/10.1016/j.compositesb.2014.04.028.
- Taraghi, I., Fereidoon, A. and Taheri-Behrooz, F. (2014), "Low-velocity impact response of woven kevlar/epoxy laminated composites reinforced with multi-walled carbon Nanotubes at ambient and low temperature", Mater. Des., 53, 152-158. https://doi.org/10.1016/j.matdes.2013.06.051.
- Terada, K., Kobayashi, S. and Takeda, N. (2000), "Experimental characterization of microscopic damage progress in AS4/PEEK cross-ply laminates under thermal cycling", Adv. Compos. Mater., 9(4), 335-348. https://doi.org/10.1163/15685510052000147.
- Vieille, B., Casado, VM. and Bouvet, C. (2014), "Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic- and thermosetting-composites: A comparative study", Compos. Struct., 110, 207-218. https://doi.org/10.1016/j.compstruct.2013.12.008.
- Wang, D., Zhou, X., Ge, H., Liu, Z., Liu, H. and Sun, K. (2012), "The influence of thermal fatigue on the properties of glass fiber/epoxy composites", Polymers Polymer Compos., 20(1- 2), 129-132. https://doi.org/10.1177/0967391112020001-225.
- Weng, J., Wen, W. and Zhang, H. (2019), "Study on low velocity impact and residual strength at high temperatures of composite laminates", Aeros. Eng., 233(3), 1106-1123. https://doi.org/10.1177/0954410017748184.