DOI QR코드

DOI QR Code

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz (School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Mahdi Torabi (School of Mechanical Engineering, Iran University of Science and Technology)
  • Received : 2021.07.25
  • Accepted : 2023.06.29
  • Published : 2023.08.10

Abstract

The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Keywords

Acknowledgement

This work was financially supported by the Iran National Science Foundation (INSF), Project no. 96011912.

References

  1. Abrate, S. (2011), Impact Engineering of Composite Structures, Springer-Verlag Wien, Lincoln Drive, Carbondale, USA. https://doi.org /10.1007/978-3-7091-0523-8. 
  2. Aghaei, M., Forouzan, MR., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low-velocity impact", Steel Compos. Struct., 18(5), 1291-1303. http://dx.doi.org/10.12989/scs.2015.18.5.1291. 
  3. Allix, O., Bahlouli, N., Cluzel, C. and Perrt, L. (1996), "Modelling and identification of temperature-dependent mechanical behaviour of the elementary ply in carbon/epoxy laminates", Compos. Sci. Technol., 56(7), 883-888. https://doi.org/10.1016/0266-3538(96)00036-X. 
  4. Andrew, J.J., Srinivasan S.M., Arockiarajan, A. and Dhakal, H.N. (2019), "Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review", Compos. Struct., 224, 111007. https://doi.org/10.1016/j.compstruct.2019.111007. 
  5. ASTM International., D7136/D7136M - 15. (2011), "Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event", Am Stand Test. 
  6. Azizi, A., Khalili, S.M.R. and Fard, K.M. (2018), "Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping", Steel Compos. Struct., 26(6), 771-779. http://dx.doi.org/10.12989/scs.2018.26.6.771. 
  7. Budhoo, Y., Liaw, B., Delaleb, F., Iyer, R. and Raju, B. (2011), "Temperature effect on drop-weight impact of woven composites", Dyn. Behavior Mater., 1, 443-453. https://doi.org/10.1007/978-1-4614-0216-9_62. 
  8. Callus, P.J. (2005), Study of the Equivalence of Hot/dry and Hot/wet Testing, Defence Science and Technology Organization Victoria (Australia) Air Vehicles Div, April. 
  9. Cheng, X., Zhao, W., Liu, S., Xu, Y. and Bao, J. (2014), "Damage of scarf-repaired composite laminates subjected to low-velocity impacts", Steel Compos. Struct., 17(2), 199-213. https://doi.org/10.12989/scs.2014.17.2.199. 
  10. Dutta, PK. and Hui, D. (1996), "Low-temperature and freeze-thaw durability of thick composites", Compos. Part B Eng., 27(3-4), 371. https://doi.org/10.1016/1359-8368(96)00007-8. 
  11. Fakhreddini-Najafabadi, S., Torabi, M., Taheri-Behrooz, F. (2021), "An experimental investigation on the low-velocity impact performance of the CFRP filled with nanoclay", Aero. Sci. Technol., 106858. https://doi.org/10.1016/j.ast.2021.106858. 
  12. Fiedler, B., Hobbiebrunken, T., Hojo, M. and Schulte, K. (2005), "Influence of stress state and temperature on the strength of epoxy resins", Proceedings of the 11th International Conference on Fracture (ICF 11), Turin, Italy, March. 
  13. Ghajar, R. and Rassaf, A. (2014), "Effect of impact and shape and tempreature on the behavior of glass/epoxy composite laminates", Modares Mech. Eng., 14(10), 1-8. https://doi.org/20.1001.1.10275940.1393.14.10.1.8.  1001.1.10275940.1393.14.10.1.8
  14. Ghasemi, AR. and Khabaz Kashani, H. (2019), "Analysis of circular hole and thermal cycle effects on the mechanical properties in multi-layer polymer composite reinforced with nanoparticles", Modares Mech. Eng., 19(1), 229-236. https://doi.org/ 20.1001.1.10275940.1397.19.1.12.2.  1001.1.10275940.1397.19.1.12.2
  15. Ghasemi, H. and Baghersad, R. (2012), "Analytical and experimental study of nonlinear behavior and failure coefficient of composite multilayers due to cyclic thermal loading", Iran. Mag. Aviat. Eng., October. 
  16. Ghelli, D., Cantarini, V. and Troiani, E. (2014), "Influence of thermal cycling on the low velocity Impact response of CFRP laminate", 16TH European Conference On Composite Materials, Seville, Spain, June. 
  17. Gower, MRL., Shaw, RM. And Sims, GD. (2005), "Evaluation of the repeatability under static loading of a compression-after-impact test method proposed for ISO standardisation", DEPC-MN 0362005. 
  18. HEXIONTM. EPIKOTE TM Resin L20 and EPIKURETM Curing Agent 960 data sheet, (2004), 1-4. 
  19. Hiremath, V.S. and Reddy, D.M. (2022), "Effect of ply orientation and laminate thickness on carbon fibre reinforced polymers under low-velocity impact", Mater. Sci. Eng. Technol., 53(10), 1290-1297. https://doi.org/10.1002/mawe.202200087. 
  20. Huang, D.D., Xu, F., Du, X.S., Lee, Z.H. and Wang, X.J. (2017), "Temperature effects on rigid nano-silica and soft nano-rubber toughening in epoxy under impact loading", Appl. Polymer Sci., 134(38), 45319. https://doi.org/10.1002/app.45319. 
  21. Icten, BM., Atas, C., Aktas, M. and Karakuzu, R. (2009), "Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates", Compos. Struct., 91(3), 318-323. https://doi.org/10.1016/j.compstruct.2009.05.010. 
  22. Kasap, S.O., Yannacopoulos, S., Mirchandani, V. and Hildebrandt, J.R. (1992), "Ultrasonic evaluation of thermal fatigue of composites", J. Eng. Mater., ASME., 132-136. https://doi.org/10.1115/1.2904151. 
  23. Kevin, D., Cowley, PW. and Beaumont, R. (1997), "The interlaminar and intralaminar fracture toughness of carbon-fibre/polymer composites: The effect of temperature", Compos. Sci. Technol., 57, 1433-1444. https://doi.org/10.1016/S0266-3538(97)00047-X. 
  24. Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. http://dx.doi.org/10.12989/scs.2014.17.4.387. 
  25. Kim, H.S., Wang, W.X. and Takao, Y. (2000), "Effects of temperature and stacking sequence on the mode I interlaminar fracture behavior of composite laminates", Key Eng. Mater., 183-187. https://doi.org/10.4028/www.scientific.net/KEM.183-187.815. 
  26. Korbelin, J., Derra, M. and Fiedler, B. (2018), "Influence of temperature and impact energy on low velocity impact damage severity in CFRP", Composites Part A Appl. Sci. Manufact., 115, 76-87. https://doi.org/10.1016/j.compositesa.2018.09.010. 
  27. Korbelin, J., Dreiner, C. and Fiedler, B. (2020), "Impact of temperature on LVI damage and tensile and compressive residual strength of CFRP", Compos. Part C, 3, 100074. https://doi.org/10.1016/j.jcomc.2020.100074. 
  28. McGowan, D.M. and Ambur, D.R. (1997), Compression Response of a Sandwich Fuselage Keel Panel with and without Damage, Langley Research Center, Virginia, USA. 
  29. Moreno, I., Caminero, M., Rodriguez, GP. and Lopez-Cela, J.J. (2019), "Effect of themal ageing on the impact and flexural damage behaviour of carbon fibre-reinforced epoxy laminate", Polymers., 11(1), 80-91. https://doi.org/10.3390/polym11010080. 
  30. Ozdemir, Z. and Turkbas, O. (2015), Compression After Impact (CAI) Performance of Prepreg Carbon Fiber Reinforced Polymers (CFRP) at Different Temperatures, Engineering Research Technology, July. 
  31. Papa, L., Langella, A. and Lopresto, V. (2019), "CFRP laminates under low-velocity impact conditions: Influence of matrix and temperature", Polymer Eng. Sci., 52(12), 2429-2437. https://doi.org/10.1002/pen.25102. 
  32. Patil, S. and Reddy, D.M. (2018), "Low velocity impact analysis on composite structures - A review", AIP Conference Proceedings 1943, 020009, https://doi.org/10.1063/1.5029585 
  33. Patil, S. and Reddy, D.M., (2020), "Impact damage assessment in carbon fiber reinforced composite using vibration-based new damage index and ultrasonic C-scanning method", Structures, 28, 638-650, https://doi.org/10.1016/j.istruc.2020.09.011. 
  34. Petersen, D., Rolfes, R. and Zimmermann, R. (2001), "Thermomechanical design aspects for primary composite structures of large transport aircraft", Aeros. Sci. Technol., 5(2), 135-146. https://doi.org/10.1016/S1270-9638(00)01089-0. 
  35. Ricciardi, M.R., Papa, I., Imperaro, F., Langella, A., Lopersto, V. and Antonucci, V. (2020), "Low-temperature effect on the impact and flexural behaviour of basalt composite laminates", Compos. Struct., 249, 112607. https://doi.org/10.1016/j.compstruct.2020.112607. 
  36. Richardson, M. and Wisheart, M.J. (1996), "Review of low-velocity impact properties of composite materials", Composites. Part A: Appl. Sci. Manufact., 27(12), 1123-1131. https://doi.org/10.1016/1359-835X(96)00074-7. 
  37. Rivallant, S., Bouvet, C. and Hongkarnjanakul, N. (2013), "Failure analysis of CFRP laminates subjected to compression after impact FE simulation using discrete interface elements", Compos. Part A Appl. Sci. Manufact., 55, 83-93. https://doi.org/10.1016/j.compositesa.2013.08.003. 
  38. Soutis, C. and Turkmen, D. (1997), "Moisture and temperature effects of the compressive failure of CFRP unidirectional laminates", J. Compos. Mater., 31, 832-849. https://doi.org/10.1177/002199839703100805. 
  39. Suresh Kumar, C., Dhakal, A., Arumgum, V. and John, R. (2015), "Effect of temperature and hybridisation on the Low velocity impact behavior of hemp-basalt/epoxy composites", Compos. Struct., 125, 407-416. https://doi.org/10.1016/j.compstruct.2015.01.037. 
  40. Suvarna, R., Arumugam, V., Bull, D.J., Chambers, A.R. and Santulil, C. (2014), "Effect of temperature on low velocity impact damage and post-impact flexural strength of CFRP assessed using ultrasonic C-scan and micro-focus computed tomograph", Compos. Part B Eng., 66, 58-64. https://doi.org/10.1016/j.compositesb.2014.04.028. 
  41. Taraghi, I., Fereidoon, A. and Taheri-Behrooz, F. (2014), "Low-velocity impact response of woven kevlar/epoxy laminated composites reinforced with multi-walled carbon Nanotubes at ambient and low temperature", Mater. Des., 53, 152-158. https://doi.org/10.1016/j.matdes.2013.06.051. 
  42. Terada, K., Kobayashi, S. and Takeda, N. (2000), "Experimental characterization of microscopic damage progress in AS4/PEEK cross-ply laminates under thermal cycling", Adv. Compos. Mater., 9(4), 335-348. https://doi.org/10.1163/15685510052000147. 
  43. Vieille, B., Casado, VM. and Bouvet, C. (2014), "Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic- and thermosetting-composites: A comparative study", Compos. Struct., 110, 207-218. https://doi.org/10.1016/j.compstruct.2013.12.008. 
  44. Wang, D., Zhou, X., Ge, H., Liu, Z., Liu, H. and Sun, K. (2012), "The influence of thermal fatigue on the properties of glass fiber/epoxy composites", Polymers Polymer Compos., 20(1- 2), 129-132. https://doi.org/10.1177/0967391112020001-225. 
  45. Weng, J., Wen, W. and Zhang, H. (2019), "Study on low velocity impact and residual strength at high temperatures of composite laminates", Aeros. Eng., 233(3), 1106-1123. https://doi.org/10.1177/0954410017748184.