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a b s t r a c t

To improve the performance of blanket: maximizing the tritium breeding rate (TBR) for tritium self-
sufficiency, and minimizing the Dose of backplate for radiation protection, most previous studies are
based on manual corrections to adjust the blanket structure to achieve optimization design, but it is
difficult to find an optimal structure and tends to be trapped by local optimizations as it involves multi-
physics field design, which is also inefficient and time-consuming process. The artificial intelligence (AI)
maybe is a potential method for the optimization design of the blanket. So, this paper aims to develop an
intelligent optimization method based on an improved multi-objective NSGA-III algorithm and an
adaptive BP neural network to solve these problems mentioned above. This method has been applied on
optimizing the radial arrangement of a conceptual design of CFETR HCSB blanket. Finally, a series of
optimal radial arrangements are obtained under the constraints that the temperature of each component
of the blanket does not exceed the limit and the radial length remains unchanged, the efficiency of the
blanket optimization design is significantly improved. This study will provide a clue and inspiration for
the application of artificial intelligence technology in the optimization design of blanket.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fusion energy has the characteristics of “inexhaustibility of re-
sources, intrinsic security, no release of CO2, and no long-lived
radioactive wastes,” [1], it would be an immense benefit to all
mankind and solve the world's energy problems once and for all.
The blanket is one of the critical research contents in the process
from fusion experimental reactor to fusion demonstration reactor
to fusion power plant, which is a significant component that ach-
ieves tritium self-sufficiency and converts fusion energy into elec-
tricity in fusion reactor [2], accordingly, the design of blanket
mainly has three objectives:
by Elsevier Korea LLC. This is an
1) Maintaining the tritium required for the fusion reactor core for
achieving tritium self-sustainability, i.e., tritium breeding ratio
(TBR).

2) Transporting the nuclear power deposition and high heat from
the plasma through the coolant flowing of internal channels for
achieving energy conversion.

3) Providing shielding for protecting the superconducting magnets
from neutron radiation.

Therefore, blanket design is a complex multi-objective optimi-
zation problem (MOOP) under the multi-physics field (such as
neutron, temperature, stress, flow, electromagnetic field, etc.).

The current optimization method of fusion reactor blanket
mainly focuses on two types:

The first type is the optimization method based on manual
professional experience. The rear manifold, rib, cap, and breeding
zone were revised by Wu et al. using multi-physics field analyses
with MCNP and ANSYS. The flow diagram of the He coolant and
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purge gas were optimized, which can meet the need for heat
removal [3]. According to the research by Hern�andez et al. [4e6],
they ongoing improved the latest design of the Helium Cooled
Pebble Bed (HCPB) for the Pre-Conceptual Design (PCD) phase in
2014e2020 based on manual professional experience. The HCPB
blanket was optimized to fulfill the TBR, thermal stress stability,
and shielding performance by artificial consciousness based on
Pereslavtsev's work [7]. The NTCOC software was developed based
on a coupled neutronics/thermal optimization code by Zhang [8], it
has been used to optimize the radial structure of the Chinese Fusion
Engineering Test Reactor (CFETR) helium cooled solid breeder
(HCSB) blanket, and the final optimization results were obtained.
Although these optimization methods have promoted the progress
of blanket design, they still have some limitations that reliance on
manual experience, high workload, manual iterative correction
betweenmultiple physical fields designs with many variables and a
high level of coupling.

The second type is the optimizationmethod based on intelligent
algorithm. To find the better structure that can meet the maximum
heat flux, the optimization of the first wall (FW) of thewater-cooled
lithium lead (WCLL) blanket was proposed by Aubert [9] using
uncertainties code URANIE [10] and ROOT [11]. A design process to
find optimal design of ITER Lower Cryostat Thermal Shield was
presented [12] by Sequential Quadratic method. Although these
methods find the optimal solution under certain conditions, most
of them are single-objective optimization and do not optimize the
key parameters of the blanket. Yet, these research illustrate that
intelligent optimization algorithms are a potential tool that can be
applied to the optimization of the blanket.

Therefore, an intelligent optimization method for CFETR HCSB
blanket is designed based on a proposed multi-objective NSGA-III
algorithmwith the adaptive scale factor and the mutation operator
of DE algorithm, and an adaptive BP neural network. The proposed
method has been validated by the international standard function,
then it applied to the optimization design of CFETR HCSB blanket.
Based on the proposed method and the Python script, neutronics
and thermal input files can be automatically modified and iterated
so as to find the optimal radial arrangement within the limits of
material temperature and outlet temperature. Finally, the TBR is
maximized and the Dose is minimized, and a series of Pareto Front
solutions (i.e., optimal solutions) are obtained such that the TBR
and shielding performance of the blanket is improved.

The rest of the paper is arranged as follows: The theory of multi-
objective optimization algorithm is introduced, and an intelligent
optimization method based on an improved multi-objective NSGA-
III algorithm with the adaptive scale factor and the mutation
operator of DE algorithm are presented and verified in Section 2;
Analysis and discussion of the proposed method of the application
results to CFETR HCSB blanket are shown in Section 3; Summari-
zation, limitation and future work are presented in Section 4.

2. Methods

2.1. The improvement and validation of NSGA-III algorithm

The multi-objective optimization design of the CFETR HCSB
blanket is usually expected to obtain a Pareto Front [13,14].
Currently, themost typical multi-objective optimization algorithms
include: NSGA [15], NSGA-II [16], SPEA [17], SPEA2 [18], PESA-II
[19], etc., and the state-of-the-art proposed Non-dominated Sort-
ing Genetic Algorithm III (NSGA-III algorithm) in 2013 [20]. Among
which, NSGA-II and NSGA-III are the most representative and
widely used. A lot of experiments [21e23] have shown that, espe-
cially in comparison in 2020 [24], the NSGA-III algorithm has better
optimization performance, and although this may vary depending
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on the different application case, the percentage of NSGA-III that
demonstrates better optimization performance will be higher. For
optimization of blanket design, the most key thing is to make TBR
maximum and Dose minimum by the optimization algorithm,
accordingly, the NSGA-III is selected to be applied to the multi-
objective optimization design of blanket due to its better optimi-
zation performance.

The NSGA-III can solve a high-dimensional goal space very well
by utilizing the reference point technique to boost robustness.

The DE algorithm was proposed by Storn in 1997 [25], it has
evolved many mutation strategies [26], thereby improving the
population diversity and local optimization ability for the conven-
tional NSGA-III algorithm and obtaining the better Pareto Front.

Improvement 1: Introducing the mutation operation of the DE
algorithm for the NSGA-III.

The conventional NSGA-III has inherent shortcoming that a
narrowly diverse population and poor search ability for solving
multi-objective optimization because of the instinctive complex
mechanism of genetic algorithm [27]. Rudolph [28] has proved that
the conventional GA will never converge to the global optimum
only by the three conventional operators. To address this disad-
vantage, the mutation operation of GA algorithm was replaced by
the mutation operation of the DE algorithm to expand the diverse
population and search ability of the NSGA-III. Moreover, the mu-
tation strategy that can guarantee the best individuals of the pre-
vious generation will definitely be selected for the next generation
of crossover operation was adopted. This expression is:

v!G
i ¼ x!G

best þ F*
�
x!G
r1 � x!G

r2

�
; r1 s r2 sbest，i¼1;2;… NP

(1)

Where: x!G
i denotes an randomly selected individual from the

population i 2(1, NP), G denotes the current generation, x!G
best

denotes one of the best individual in the G th generation, NP de-
notes the population size, and F denotes the constant scale factor.

Improvement 2: Introducing an adaptive scale factor F.
Furthermore, the conventional NSGA-III algorithm also has

disadvantages of some excellent children genes cannot be inherited
leading to a significant reduction, in particular, the convergence of
the algorithm becomes markedly slower at the later stages of the
algorithm due to its use of a constant scale factor. To address this
disadvantage, an adaptive scale factor was introduced, thus, the
conventional fixed F value:

F ¼ Fconstant (2)

Chang to the adaptive F function:

F ¼ Fmin þ DF*cos
�
p

2
*

G
Gmax

�
(3)

Where: F is the scale factor value of the G th generation, Fmin is the
minimum scale factor value, DF denotes the variation range of the
scale factor, G denotes the current generation, and Gmax denotes the
maximum generation.

This functionwas chosen as a dynamic adaptive function mainly
because:

1) This function satisfies the monotonic decreasing property to
ensure the overall decreasing trend of the F, and chooses a larger
F value in the prophase of the algorithm, focusing on its global
search solution ability, and a smaller F value in the anaphase of
the algorithm, focusing on its local search solution ability.
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2) This function is a convex function in the definition domain,
which is more in line with the overall optimization idea of
focusing on the global search solution ability in the prom-
etaphase of optimization, and focusing on the local search so-
lution ability in the anaphase of optimization.

Meanwhile, the values of parameters are also important, and
Das [29] found that the algorithm performs better for F2 (0.4,0.95)
and CR 2 (0.1,0.8), where CR is preferred to 0.5.

Thus, the improvement strategy of adaptive scale factor and
mutation operation of DE algorithm were added to the conven-
tional NSGA-III framework. The pseudo-code of the proposed
NSGA-III is as follows.
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The 12 international benchmark optimization functions (The
DTLZ series functions, The ZDT series functions [30]) were used to
validate the correctness and efficiency of the improved NSGA-III
algorithm. The four commonly used indicators were chosen as
evaluation criteria for the optimization algorithm, namely GD, IGD,
HV, and Spacing [31]. The smaller the GD, IGD, and Spacing value,
the better the convergence and Spread, and the larger the HV value,
the better the uniformity.

Then, the optimization performance of the conventional and
improved NSGA-III were compared by the 12 international opti-
mization functions and the four evaluation indicators. The param-
eter F of the conventional NSGA-III is set to 0.5, the parameters Fmin
and the DF of the improved NSGA-III are set to 0.4 and 0.1. The rest
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of the settings are the same. The optimization code was performed
50 times for each DTLZ and ZDT functions, and the average calcu-
lation results are shown in Table 1 (Bold means win).

By comparing the result, the improved NSGA-III algorithm
outperforms the conventional NSGA-III algorithm in most cases.
There are 48 comparisons mentioned above, and the improved
NSGA-III prevails in 33, two algorithms tied in 11, and the con-
ventional NSGA-III prevails in 4. Therefore, the improved NSGA-III
algorithm performs better in terms of the optimization ability,
which proves the correctness and efficiency of the improved stra-
tegies. Therefore, the proposed algorithm with two improvements
described above can significantly improve the optimization per-
formance and was utilized to the blanket design.

2.2. The presentation of an adaptive back propagation (BP) neural
network

The functions of BP neural network mainly include regression
and classification, etc. The BPNN is utilized to learn certain data
mapping relations without prior disclosure of the mathematical
equations describing these mapping relations.

An adaptive BP neural networkmethod with learning rate decay
and a corresponding a training set sampling based on prior
knowledge has been proposed and validated by five radiation field
reconstruction cases from our group previous research [32]. The
proposed method shows a very excellent predictive performance
accompanied by an extremely fast prediction speed.

With the merits of this method, it will be coupled with the
NSGA-III algorithm in Section 3, so as to improve the optimization
speed.

2.3. The design of the intelligent optimization method based on an
improved NSGA-III and an adaptive BP neural network

It is very noteworthy that it is laborious and expensive to only
rely on pure NSGA-III optimization algorithm with software
Table 1
Comparison of the optimization results with 12 international benchmark optimization fu

Name Type GD

DTLZ1 conventional NSGA-III 9.29 � 10�6

improved NSGA-III 1.04£10¡7

DTLZ2 conventional NSGA-III 3.81 � 10�6

improved NSGA-III 3.07£10¡6

DTLZ3 conventional NSGA-III 4.39 � 10�4

improved NSGA-III 5.28£10¡6

DTLZ4 conventional NSGA-III 4.08 � 10�7

improved NSGA-III 3.20£10¡7

DTLZ5 conventional NSGA-III 4.05 � 10�6

improved NSGA-III 3.33£10¡6

DTLZ6 conventional NSGA-III 3.66 � 10�6

improved NSGA-III 3.09£10¡6

DTLZ7 conventional NSGA-III 3.38 � 10�5

improved NSGA-III 6.46£10¡6

ZDT1 conventional NSGA-III 4.02 � 10�6

improved NSGA-III 3.75£10¡6

ZDT2 conventional NSGA-III 4.22 � 10�6

improved NSGA-III 7.66£10¡7

ZDT3 conventional NSGA-III 3.13 � 10�5

improved NSGA-III 2.86£10¡5

ZDT4 conventional NSGA-III 2.00£10¡5

improved NSGA-III 1.95 � 10�4

ZDT6 conventional NSGA-III 3.46 � 10�6

improved NSGA-III 3.11£10¡6
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simulations to find the global Pareto Front. Because the average
time to compute one-time blanket (include neutronics and thermal
modeling) model is about 2 min in the optimization process of the
post-experiment, and when the population size is set to 30 and the
maximum generation is set to 100, it takes roughly 12 days when
the optimization algorithm is executed three times.

To address this problem, the use of neural network models
instead of software simulation to speed up the optimization process
is a viable solution. In the post-experiment, a generation of thirty
populations in the optimization algorithmwith neural network can
be calculated in less than 1 s, which is a 120 times improvement in
the efficiency of single model optimization. Especially for full-scale
model simulations, which require lower statistical error, the opti-
mization efficiency will be significantly improved by using BP
neural network to accelerate the process. Therefore, the application
of BP neural network to replace the process of software simulation
is a necessary for find the global Pareto Front.

But for the above method, there are inevitable errors of neural
network prediction and software simulation calculation. Thus, the
real data in current optimizationwere added to the training set and
then the BP neural network was retrained to obtain a neural
network with higher accurate prediction at the location of Pareto
Front. Then, the NSGA-III algorithm coupled with BP neural
network code was executed again and again until the error be-
tween the neural network prediction and the software simulation
calculation is less than 5%, the update of the neural network model
was stopped. Finally, the Pareto Front of blanket optimization was
determined according to the value calculated by the software
simulation.

Thus, according to the design of the intelligent optimization
method based on an improved NSGA-III and an adaptive BP neural
network, the efficiency and global solutions of the intelligent
optimization of the blanket can be considerably improved.

The flow chart of HCSB blanket optimization based on the
intelligent optimization method is shown in Fig. 1.
nction.

IGD HV Spacing

1.79 � 10�3 5.82 � 10�1 1.55 � 10�4

1.78£10¡3 5.82 � 10�1 1.61£10¡6

3.96 � 10�3 3.47 � 10�1 6.08£10¡3

3.93£10¡3 3.48£10¡1 6.11 � 10�3

7.17 � 10�3 3.41 � 10�1 7.15 � 10�3

3.97£10¡3 3.47£10¡1 6.23£10¡3

3.96 � 10�3 3.47 � 10�1 6.02 � 10�3

3.96 � 10�3 3.48£10¡1 6.01£10¡3

3.96 � 10�3 3.47 � 10�1 6.07 � 10�3

3.96 � 10�3 3.47 � 10�1 6.03£10¡3

3.96 � 10�3 3.47 � 10�1 6.09 � 10�3

3.95£10¡3 3.50£10¡1 6.07£10¡3

5.03 � 10�3 2.42 � 10�1 1.63 � 10�3

4.82£10¡3 2.42 � 10�1 9.88£10¡4

3.88 � 10�3 7.20 � 10�1 1.00 � 10�2

3.88 � 10�3 7.20 � 10�1 1.00 � 10�2

3.80 � 10�3 4.45 � 10�1 4.10 � 10�3

3.79£10¡3 4.45 � 10�1 3.18£10¡3

5.90 � 10�3 5.82 � 10�1 1.15 � 10�2

5.55£10¡3 5.83£10¡1 1.05£10¡2

3.90£10¡3 7.20 � 10�1 9.89£10¡3

2.26 � 10�2 9.70£10¡1 3.06 � 10�2

3.00 � 10�3 3.88 � 10�1 1.96 � 10�3

3.00 � 10�3 3.88 � 10�1 1.93£10¡3
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3. The application of an intelligent optimization method for
HCSB blanket

3.1. The introduction of the CFETR HCSB blanket

CFETR is a proposed tokamak fusion reactor [33], the HCSB
blanket was proposed as one of the main candidate blanket for
CFETR, the 3D simplified CFETR model and blanket module as
shown in Fig. 2 (a) and (b), respectively, the blanket module is
mainly composed of the first wall (FW), breeding zones (Be and
Li4SiO4), cooling plates (CPs), backplate and attachment systems
[34]. The blanket module No.12 in Fig. 2(a) was chosen to the
research object due to it experiences the most serious neutron
irradiation and suffers the maximum neutron wall loading [35].
Fig. 1. The flow chart of HCSB blanket optimization based on the intelligent optimi-
zation method.
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3.2. Design and implementation of the optimized model

3.2.1. The selection of optimization variables and optimization
objectives

Considering that one of the critical factors for the 3D blanket
design is the radial arrangement of the functional zone [36], radial
arrangement was firstly selected as the optimization variable. The
key parameters of the blanket: the TBR and the Dose are used as
optimization objectives.
3.2.2. The simplification and setup of simulation model
If the full-scale 3D model is used for calculation analysis, it will

become very time-consuming, and make the optimization process
extremely redundant. Therefore, the 3D neutronics and 2D planar
thermal-hydraulic simulation models, which share the same ge-
ometry, material, and properties, are simplified as shown in Fig. 2
(c) and (d).

SuperMC software [37] and the IAEA Fusion Evaluation Nuclear
Database FENDL-3.0 [38] are used as neutronics simulation. Fluent
14.0 [39] and Ansys Parameter Design Language 14 (APDL 14) are
used as thermal-hydraulics simulation.

The geometry and computational setting of the CFETR HCSB
blanket are listed in Tables 2 and 3, more detailed material infor-
mation and boundary conditions are available in these literatures
[40e42].
3.2.3. The implementation of CFETR HCSB blanket optimization
design

For the optimization of blanket design, it is difficult to satisfy all
the optimization variables and optimization objectives in engi-
neering practice. Therefore, in this paper, only the following opti-
mization variables, optimization objectives and constraints
condition are selected, without considering all possible optimiza-
tion criteria.

Optimization variables: the radial length of the functional
zones, that is, four Be breeding zones (X1, X3, X5, X7) and three
Li4SiO4 breeding zones (X2, X4, X6), as shown in Fig. 3. The seven
breeding zones were determined based on the previous studies and
experience, and the number of Li4SiO4 and Bewill also be optimized
in the future research.

Optimization objectives:

1) Making the TBR of the whole HCSB blanket as larger as
possible.
2) Making the Dose of the backplane of the HCSB blanket as
lower as possible.

Constraint condition:

1) The temperature of all components of the whole HCSB
blanket not exceed the limit.
2) The radial length of functional zone remains unchanged, that
is, S Xi ¼ 553 mm.
3) The outlet temperature is about 500 �C (to avoid creep
strength drop temperature).

These are an inevitable constraint condition for the blanket
optimization design, so the penalty function is introduced into the
improved NSGA-III [43]. In terms of constraint condition, the main
considerations are whether the outlet temperature and material
temperature of the design solution exceed the limits and whether
the radial functional length meets the design requirements. The
strategy for handling the constraint condition is based on the
following two principles:



Fig. 2. The CFETR HCSB blanket and simplified simulation model.

Table 2
Main materials of the No. 12 blanket.

Item Materials and Temperature limitation

structure material Reduced Activation Ferritic/Martensitic (RAFM), The temperature of RAFM and these pipes does not exceed 550 �C.
First wall Tungsten, the temperature of W armor does not exceed 1300 �C.
tritium breeder Lithium ceramic of Li4SiO4 pebble with 90% 6Li enrichment with packing factor about 62%, 400 �C < The temperature of Li4SiO4 < 920 �C
neutron multiplier Beryllium pebble bed with packing factor about 80%, 300 �C < The temperature of Be < 650 �C

Table 3
Neutronics and thermal hydraulics computational boundary setup of the No. 12 blanket.

Item Value or Setting

parametric plasma neutron source/MeV 14
coolant 8 MPa helium gas
coolant inlet/outlet temperature/�C 300/500
Wall roughness/mm 0.2
Turbulence model keε

Top, bottom, left, and right surfaces of
neutronics model

Reflection boundary

Back surface of neutronics model Transmitting boundary
Top, bottom and back surfaces of thermal-

hydraulic model
Adiabatic boundary

Top and bottom surfaces of the connecting
elbow pipes

Adiabatic, no slip wall

The convergence criterion of the neutronics
calculation

Less than 2% relative statistical error

The convergence criterion of the thermal-
hydraulic calculation

The default convergence residual errors are less than 1 � 10�2 for velocity, turbulent kinetic energy and turbulent kinetic
energy dissipation, and less than 1 � 10�8 for pressure and temperature.
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1) When both parents and children violate the constraint or not,
the individual that violates the lesser constraint is selected.

2) When only one of the parents and children violates the
constraint, the individual that does not violate the constraint is
selected.

One thing to point out here is that the “TBR” of simplified 3D
3155
neutronics model is generally larger than accurate 3D neutronics
model [44], thus, the TBR in this paper is only employed tomeasure
the trend of change; moreover, the design constraints such as fuel
consumption and structural stress are not considered in this paper,
and only the temperature and radial length are used to satisfy the
constraints. This paper mainly focuses on the study of intelligent
optimization method for blanket, and only need to add additional



Fig. 3. The simplified blanket simulation model for optimization design.
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these constraints when fuel consumption and structural stress
need to be considered, which does not affect the correctness and
efficiency of the optimization methods.

The PyCharmwith Python3.8 is used as a development platform
for the optimization design of blanket model.

The main application process of the improved NSGA-III algo-
rithm in the CFETR HCSB blanket is provided as follows and the
flow chart is given in Fig. 4:

Step1: The initial parameters of the radial length of the func-
tional zone of the HCSB blanket was randomly generated and
coding by the improved NSGA-III algorithm;
Step2: The neutronics geometric model and thermal-hydraulic
geometric model was generated by decoding parameters
generated in Step1, all neutronics and thermal-hydraulic
computational boundary settings (e.g., neutron source distri-
bution, geometric structure of each cell and plane, properties
and density of each material, etc.) are set according to design
requirements;
Step3: The TBR, Dose, and the Nuclear Power Deposit (NPD)
were calculated by calling the SuperMC software for neutron
transport calculations;
Step4: Through the proposed data mapping script based on
Python, the NPD was transferred to thermal-hydraulic model
calculations as an internal heat source, then building the
thermal-hydraulic model of the blanket and generating the
mesh, the outlet temperatures and the temperatures of the
components in the functional zone were calculated by calling
the Fluent software;
Step5: Based on the improved hybrid NSGA-III and DE algorithm
ideas of parent's mutation and crossover, the children were
generated, repeat Step2, Step3, Step4, the parent's and chil-
dren's blanket design cases were evaluated by penalty function,
and selected the more excellent design cases in both genera-
tions to retain.
Step6: Repeated Step5 until the specified number of evolu-
tionary generations was completed, then a Pareto Front solution
was obtained.

The setup of improved NSGA-III algorithm is shown in Table 4.
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3.3. Optimization results

The process of Fig. 1 was implemented in this section 3.3. The
improved NSGA-III algorithm was first applied to the optimization
design of the CFETR HCSB blanket based on the Step1 in Fig. 1. The
optimization algorithmwas executed three times that take roughly
12 days, and then the three optimizations results were combined
after manually deleting some solutions outside the constraint, as
shown in Fig. 5 and Table 5. Each point in Fig. 5 is a feasible solution
generated by the optimization algorithm, the red dots indicate the
optimal solution. Fig. 5 shows that the improved NSGA-III algo-
rithm is effective in optimizing the HCSB blanket, which locates the
Pareto Front, that is, maximizing the TBR and minimizing the dose.

As described in section 2.3, strictly speaking, the current opti-
mization result is not guaranteed to be the global optimal solution,
and therefore, the validity of the Pareto Front of Fig. 5 is open to
question since it is too time consuming to only rely on software
simulation calculation.

Consequently, an adaptive BP neural network with a training set
sampling based on prior knowledge based improved NSGA-III
optimization algorithms will be applied to the optimal design of
the HCSB blanket. This neural network was employed to replace the
software simulation calculations of SuperMC and Fluent 14.0, so as
to accelerate the optimization process. In terms of finding the
globally optimal Pareto Front, the aim of Fig. 5 is to find a pseudo-
Pareto Front (as a reference and benchmark for the global optimal
Pareto Front) and to collect the training set for future neural
network training.

Based on the adaptive BP neural network principle of a training
set sampling:

1) To sample as randomly and uniformly as possible in objective
space, Latin hypercube sampling [45] was first performed in the
domain of the optimization variables, and a total of 4800 Latin
hypercube sampling points are created.

2) Then based on the empirical knowledge, 1500 points closest to
the Pareto Front in Fig. 5 were also added to the training set due
to the highest prediction performance of the neural network is
required at the Pareto Front other than at the center of the
objective space.



Fig. 4. The flow chart of the application of improved NSGA-III algorithm for CFETR HCSB blanket.

Table 4
The setup of improved NSGA-III algorithm.

Item Value

Population size 30
Maximum generations 100
Initial differential scale F 0.4
CR 0.7
Domain of optimization variables Be2[0.05 m, 0.2 m]

Li2[0.02 m, 0.09 m]
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Therefore, there are 6300 data sets for the neural network, of
which 6000 are randomly selected as the training set and the
remaining 300 are used as the test set.

The optimization variables is used as the input of the neural
network, the TBR, Dose, outlet temperature, and maximum tem-
perature of each component of this blanket are used as the output.
The neural network was trained and implemented under the Ten-
sorFlow framework using the Python environment. The search
steps of the neural network topology are as follows: the search
space is extended to 1e3 layers with a maximum of 150 nodes, and



Fig. 5. The Pareto optimal solutions of CFETR HCSB blanket by improved NSGA-III algorithm.

Table 5
Results of blanket optimization by improved NSGA-III algorithm.

No. x1 (unit: m) x2 x3 x4 x5 x6 x7 TBR Dose (unit: rem/hr)

1 0.08894 0.03885 0.11741 0.06129 0.15112 0.08882 0.00656 1.870 7.18E-11
2 0.07191 0.03934 0.10723 0.04208 0.20000 0.09000 0.00244 1.896 7.22E-11
3 0.07310 0.03613 0.10723 0.04261 0.20000 0.09000 0.00394 1.906 7.24E-11
4 0.07100 0.02987 0.10543 0.04475 0.20000 0.08989 0.01207 1.920 7.32E-11
5 0.05000 0.02200 0.10664 0.05500 0.20000 0.07676 0.04260 1.930 7.37E-11
6 0.07310 0.02000 0.09677 0.03084 0.19055 0.08137 0.06038 1.954 7.66E-11
7 0.07781 0.02000 0.08850 0.03834 0.19999 0.07574 0.05262 2.025 9.01E-11
8 0.06983 0.02344 0.09720 0.04124 0.20000 0.08989 0.03140 2.045 9.14E-11
9 0.07782 0.02554 0.12844 0.04263 0.16278 0.09000 0.02579 2.052 9.24E-11
10 0.07252 0.02000 0.09516 0.02000 0.19825 0.07130 0.07577 2.065 9.32E-11
11 0.05687 0.02900 0.11931 0.02996 0.20000 0.06826 0.04961 2.102 9.63E-11
12 0.05285 0.04558 0.12100 0.02411 0.20000 0.06286 0.04661 2.120 1.07E-10
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the topology was selected at this time when the loss function value
is minimum and tend to converge. By the above operation, the
parameter settings and prediction results of the adaptive BP neural
network model are shown in Table 6.

Then the ten neural network models in Table 6 were used
directly to predict the TBR, Dose, outlet temperature, and temper-
ature of each component of the blanket model, and they were used
as the optimization objectives and constraints condition of the
Table 6
Parameter settings and prediction results of the adaptive BP neural network model.

Algorithm settings TBR Dose t Be1 Li1

Layer number 3 3 2 2 2
Batch Size 256 256 384 256 384
Nodes number per layer 100,80,60 128,64,16 128,64 256,64 256,64
Activation function Softsign Tanh Softsign Softsign Softsign
Test set MRE 5.64% 2.37% 0.31% 0.33% 8.91%

Algorithm settings Be2 Li2 Be3 Li3 Be4

Layer number 2 2 2 2 2
Batch Size 384 384 384 384 384
Nodes number per layer 128,64 256,128 64,64 64,64 32,64
Activation function Softsign Softsign Softsign Softsign Softsign
Test set MRE 1.43% 1.92% 0.79% 2.44% 0.63%
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improved NSGA-II algorithm.
The optimization flow chart for HCSB blanket based on adaptive

BP neural network and improved NSGA-III optimization algorithm
is shown in Fig. 6. The flow is almost the same as Fig. 4, but the
previous values obtained by software simulationwere predicted by
the neural network model. For the calculation speed, the optimi-
zation that originally take twelve days can be done within 5 min
now.

The three optimizations were executed again according to Fig. 6,
and then the three optimizations results are combined after
manually deleting some solutions outside the constraint, as shown
in Fig. 7 and Table 7. It shows that the optimization algorithm based
on the adaptive BP neural network prediction still finds the Pareto
Front, maximizes the TBR and minimizes the Dose.

According to the comparison of the two Pareto Fronts in Fig. 7
and Table 7 (where Pre_ in Table 7 represents the value obtained
based on the neural network prediction and Real_ is the value
obtained from the software simulation calculation), there is a gap
between the two Pareto Fronts, and their average relative errors of
TBR and Dose are 4.34% and 9.21%, respectively. It's worth noting
that the NSGA-III algorithm based on neural network is faster than
the pure NSGA-III algorithm, so more populations can be set up to
find the optimal solution (50 populations are set in Fig. 7), and this
is an advantage of finding a better solution in terms of the absolute



Fig. 6. The flow chart of the application of improved NSGA-III algorithm and adaptive BP neural network for CFETR HCSB blanket.
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number of populations.
To further find the better and real Pareto Front according to the

flow in Fig. 1, the real data in Table 7 were added to the training set
and the neural network was retrained until the error between the
neural network prediction and the software simulation calculation
is less than 5%. After two iterations of the neural network, the MRE
of the TBR and Dose obtained by the neural network calculation and
simulation software are 3.39% and 4.87%, respectively, as shown in
Table 8 and Fig. 8. If a lower MRE is desired, using a neural network
model with an acceptable prediction time and a prediction MRE
below 10�5 is a potential solution.

From a mathematical point of view, the final Pareto Front of the
blanket optimization (eleven solutions in total, as shown in Fig. 9,
and Table 9) was found by the proposed an intelligent optimization
method, which is also better than the Pareto Front in Fig. 5 of pure
NSGA-III algorithm only calculated by software simulation.

From a neutronic and dose point of view, the maximized TBR are
between 1.87 and 2.12, which all meet the requirements of main-
taining tritium self-sustainability; the minimized Dose are also at
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an acceptable level according to the recommended dose rate for the
reactor shutdowns [46], which meets the advanced remote oper-
ation requirements in the United States. Since this paper considers
the Dose of the whole backplane and the physical model of simu-
lation is a solid entity, it is higher than the reality of the backplane
dose rate with many pipes and pipe holes.

Therefore, it is proved that the proposed intelligent optimization
method for blanket optimization has significant optimization ef-
fect, and the efficiency of CFETR HCSB blanket optimization design
is remarkably improved, the optimal design of the blanket is ach-
ieved under certain constraints.
4. Conclusion and future work

This paper proposes an intelligent optimization method for
CFETR HCSB blanket based on an improved multi-objective NSGA-
III algorithm and an adaptive BP neural network. The innovations
and contributions of this paper are as follows:



Fig. 7. The Pareto optimal solutions of CFETR HCSB blanket based on improved NSGA-III algorithm and adaptive BP neural network.

Table 7
Results of blanket optimization based on improved NSGA-III algorithm with adap-
tive BP neural network.

No. x1 x2 x3 x4 x5 x6 x7

1 0.05828 0.03762 0.14283 0.03647 0.19217 0.06732 0.01832
2 0.07340 0.03021 0.11308 0.06101 0.16718 0.09000 0.01812
3 0.05211 0.02161 0.10369 0.03554 0.20000 0.08002 0.06003
4 0.05000 0.02000 0.11304 0.04425 0.17667 0.09000 0.05904
5 0.05211 0.02104 0.10060 0.04429 0.19119 0.08975 0.05403
6 0.06664 0.02717 0.10561 0.03367 0.19660 0.08505 0.03826
7 0.05156 0.03253 0.15231 0.02000 0.15073 0.08618 0.05969
8 0.05000 0.02418 0.10956 0.02000 0.18779 0.08143 0.08004
9 0.07532 0.02000 0.20000 0.07826 0.05000 0.09000 0.03942
10 0.06809 0.02243 0.20000 0.04798 0.11347 0.09000 0.01103
11 0.06465 0.03615 0.14739 0.03000 0.20000 0.06841 0.00641
12 0.06581 0.02025 0.09473 0.02000 0.19959 0.08513 0.06749
13 0.05159 0.03163 0.11853 0.02386 0.20000 0.09000 0.03739

No. Pre_TBR Pre_Dose Real_TBR Real_Dose TBR_MRE Dose_MRE

1 1.974 8.01E-11 1.871 7.42E-11 0.055 0.080
2 1.976 8.08E-11 1.811 7.22E-11 0.091 0.119
3 2.017 8.58E-11 1.886 7.67E-11 0.070 0.119
4 2.011 8.45E-11 1.951 7.49E-11 0.031 0.127
5 2.026 8.77E-11 1.868 7.57E-11 0.085 0.158
6 2.048 8.91E-11 2.073 9.42E-11 0.012 0.054
7 2.013 8.48E-11 2.133 9.96E-11 0.056 0.149
8 2.035 8.89E-11 1.973 7.69E-11 0.032 0.157
9 1.925 7.31E-11 1.834 7.51E-11 0.049 0.026
10 1.968 7.41E-11 1.986 7.35E-11 0.009 0.008
11 2.005 8.12E-11 2.122 9.92E-11 0.055 0.181
12 2.065 9.14E-11 2.079 9.20E-11 0.007 0.006
13 2.093 9.84E-11 2.121 9.72E-11 0.013 0.013

Table 8
Results of blanket optimization based on improved NSGA-III algorithm and two it-
erations of the adaptive BP neural network.

No. x1 x2 x3 x4 x5 x6 x7

1 0.060 0.021 0.124 0.044 0.176 0.080 0.044
2 0.075 0.025 0.177 0.029 0.187 0.049 0.010
3 0.068 0.020 0.187 0.052 0.122 0.089 0.014
4 0.072 0.020 0.184 0.060 0.116 0.075 0.026
5 0.073 0.037 0.123 0.020 0.198 0.090 0.011
6 0.050 0.020 0.130 0.051 0.180 0.090 0.031
7 0.078 0.020 0.104 0.053 0.199 0.089 0.009
8 0.053 0.022 0.126 0.028 0.200 0.087 0.036
9 0.066 0.020 0.124 0.029 0.193 0.088 0.033

No. Pre_TBR Pre_Dose Real_TBR Real_Dose TBR_MRE Dose_MRE

1 1.987 7.960E-11 2.068 8.957E-11 0.039 0.111
2 1.971 7.600E-11 1.893 7.508E-11 0.041 0.012
3 1.969 7.430E-11 1.885 7.373E-11 0.044 0.008
4 1.948 7.430E-11 1.974 7.325E-11 0.013 0.014
5 2.100 9.920E-11 2.111 9.892E-11 0.005 0.003
6 2.013 8.190E-11 1.964 7.444E-11 0.025 0.100
7 2.023 8.310E-11 1.817 7.375E-11 0.113 0.127
8 2.078 8.930E-11 2.115 9.171E-11 0.018 0.026
9 2.070 8.640E-11 2.085 8.967E-11 0.007 0.037
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1) The first key issue is to improve the method's optimization
performance for the blanket optimization design. Based on the
drawbacks existing in the conventional NSGA-III, the strategy of
adaptive scale factor and mutation operator is introduced to
improve the global and local optimization and population di-
versity. Then, the improved NSGA-III algorithm is validated by
12 international benchmark optimization functions, and the
results indicate the improved NSGA-III has significant optimi-
zation performance than the conventional NSGA-III, which
proves the correctness and efficiency of the improved strategy.
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2) Another key issue is to improve the method's speed for finding
Pareto Front for the blanket optimization design. So, an intelli-
gent optimization method based on an improved multi-
objective NSGA-III algorithm and an adaptive BP neural
network is developed. The adaptive BP neural network-based
NSGA-III algorithm is 120 times more efficient than the soft-
ware computation-based NSGA-III algorithm for a generation of
30 populations. Therefore, more populations can be set up to
find the optimal solution, and this is an advantage of finding a
better solution in terms of the absolute number of populations.

3) The proposed intelligent optimizationmethod are applied to the
HCSB blanket optimization, and the results indicate the optimal
design of the HCSB blanket, namely maximizing the TBR and
minimizing the Dose, is achieved under certain constraints. This
study can provide valuable guidance and reference for the



Fig. 8. The Pareto optimal solutions of CFETR HCSB blanket based on improved NSGA-III algorithm and two iterations of the adaptive BP neural network.

Fig. 9. The final Pareto optimal solutions of CFETR HCSB blanket based on the proposed intelligent optimization method.

Table 9
Final results of blanket optimization based on the proposed intelligent optimization method.

No. x1 x2 x3 x4 x5 x6 x7 TBR Dose

1 0.08894 0.03885 0.11741 0.06129 0.15112 0.08882 0.00656 1.870 7.18E-11
2 0.07191 0.03934 0.10723 0.04208 0.20000 0.09000 0.00244 1.896 7.22E-11
3 0.07310 0.03613 0.10723 0.04261 0.20000 0.09000 0.00394 1.906 7.24E-11
4 0.07100 0.02987 0.10543 0.04475 0.20000 0.08989 0.01207 1.920 7.32E-11
5 0.05000 0.02200 0.10664 0.05500 0.20000 0.07676 0.04260 1.930 7.37E-11
6 0.05000 0.02000 0.12986 0.05107 0.17976 0.09000 0.03232 1.964 7.44E-11
7 0.06069 0.02101 0.12447 0.04496 0.17677 0.08030 0.04481 2.068 8.96E-11
8 0.06559 0.02000 0.12353 0.02931 0.19256 0.08780 0.03422 2.085 8.97E-11
9 0.05687 0.02900 0.11931 0.02996 0.20000 0.06826 0.04961 2.102 9.63E-11
10 0.07259 0.03695 0.12348 0.02000 0.19824 0.09000 0.01175 2.111 9.89E-11
11 0.05285 0.04558 0.12100 0.02411 0.20000 0.06286 0.04661 2.120 1.07E-10
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conceptual design and comprehensive analysis of the CFETR
HCSB blanket.

The proposed method improves the optimization design effi-
ciency of the blanket model to a certain extent. However, there are
some limitations in the application of the method, such the opti-
mization design of the blanket currently considers only the func-
tional radial arrangement.

Hence, it is necessary to further perfect the research. In the
future, the material selection of blanket, and the number of Li4SiO4
and Be, the enrichment of Li-6 can be optimized as hybrid discrete
and continuous variables, so as to make the optimization closer to
the real world.
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