DOI QR코드

DOI QR Code

Tackling range uncertainty in proton therapy: Development and evaluation of a new multi-slit prompt-gamma camera (MSPGC) system

  • Youngmo Ku (Depaprtment of Nuclear Engineering, Hanyang University) ;
  • Sehoon Choi (Depaprtment of Nuclear Engineering, Hanyang University) ;
  • Jaeho Cho (Depaprtment of Nuclear Engineering, Hanyang University) ;
  • Sehyun Jang (Depaprtment of Nuclear Engineering, Hanyang University) ;
  • Jong Hwi Jeong (Proton Therapy Center, National Cancer Center) ;
  • Sung Hun Kim (Proton Therapy Center, National Cancer Center) ;
  • Sungkoo Cho (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Chan Hyeong Kim (Depaprtment of Nuclear Engineering, Hanyang University)
  • Received : 2023.04.18
  • Accepted : 2023.05.22
  • Published : 2023.09.25

Abstract

In theory, the sharp dose falloff at the distal end of a proton beam allows for high conformal dose to the target. However, conformity has not been fully achieved in practice, primarily due to beam range uncertainty, which is approximately 4% and varies slightly across institutions. To address this issue, we developed a new range verification system prototype: a multi-slit prompt-gamma camera (MSPGC). This system features high prompt-gamma detection sensitivity, an advanced range estimation algorithm, and a precise camera positioning system. We evaluated the range measurement precision of the prototype for single spot beams with varying energies, proton quantities, and positions, as well as for spot-scanning proton beams in a simulated SSPT treatment using a phantom. Our results demonstrated high accuracy (<0.4 mm) in range measurement for the tested beam energies and positions. Measurement precision increased significantly with the number of protons, achieving 1% precision with 5 × 108 protons. For spot-scanning proton beams, the prototype ensured more than 5 × 108 protons per spot with a 7 mm or larger spot aggregation, achieving 1% range measurement precision. Based on these findings, we anticipate that the clinical application of the new prototype will reduce range uncertainty (currently approximately 4%) to 1% or less.

Keywords

Acknowledgement

This research was supported by the National Cancer Center Grants (NCC-2110390-3), Korea. Additionally, it received support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019M2D2A1A02059814). The study was also backed by Field-oriented Technology Development Project for Customs Administration through National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT and Korea Customs Service (NRF-2021M3I1A1097895). Lastly, the National Research Foundation of Korea (NRF) grant, funded by the Korea government (Ministry of Science and ICT) (RS-2022-00144350), contributed to the research.

References

  1. R.R. Wilson, Radiological use of fast protons, Radiology 47 (1946) 487-491, https://doi.org/10.1148/47.5.487.
  2. H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Phys. Med. Biol. 57 (2012), https://doi.org/10.1088/0031-9155/57/11/R99.
  3. A. Fredriksson, R. Bokrantz, A critical evaluation of worst case optimization methods for robust intensity-modulated proton therapy planning, Med. Phys. 41 (2014), https://doi.org/10.1118/1.4883837.
  4. D. Pflugfelder, J.J. Wilkens, U. Oelfke, Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy, Phys. Med. Biol. 53 (2008) 1689e1700, https://doi.org/10.1088/0031-9155/53/6/013.
  5. J. Unkelbach, M. Alber, M. Bangert, R. Bokrantz, T.C.Y. Chan, J.O. Deasy, A. Fredriksson, B.L. Gorissen, M. Van Herk, W. Liu, H. Mahmoudzadeh, O. Nohadani, J.V. Siebers, M. Witte, H. Xu, Robust radiotherapy planning, Phys. Med. Biol. 63 (2018), https://doi.org/10.1088/1361-6560/aae659.
  6. J. Unkelbach, T. Bortfeld, B.C. Martin, M. Soukup, Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning, Med. Phys. 36 (2009) 149-163, https://doi.org/10.1118/1.3021139.
  7. W. Liu, X. Zhang, Y. Li, R. Mohan, Robust optimization of intensity modulated proton therapy, Med. Phys. 39 (2012) 1079-1091, https://doi.org/10.1118/1.3679340.
  8. A.C. Knopf, A. Lomax, In vivo proton range verification: a review, Phys. Med. Biol. 58 (2013) 131-160, https://doi.org/10.1088/0031-9155/58/15/R131.
  9. S. Tattenberg, T.M. Madden, B.L. Gorissen, T. Bortfeld, K. Parodi, J. Verburg, Proton range uncertainty reduction benefits for skull base tumors in terms of normal tissue complication probability (NTCP) and healthy tissue doses, Med. Phys. (2021), https://doi.org/10.1002/mp.15097.
  10. J. Krimmer, D. Dauvergne, J.M. Letang, Testa, Prompt-gamma monitoring in hadrontherapy: a review, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 878 (2018) 58-73, https://doi.org/10.1016/j.nima.2017.07.063.
  11. F. Stichelbaut, Y. Jongen, Verification of the proton beam position in the patient by the detection of prompt gamma rays emission, in: 39th Meet. Part, San Fr., 2003, pp. 1-5. Ther. Co-Op. Gr.
  12. C.H. Min, C.H. Kim, M.Y. Youn, J.W. Kim, Prompt gamma measurements for locating the dose falloff region in the proton therapy, Appl. Phys. Lett. 89 (2006) 2-5, https://doi.org/10.1063/1.2378561.
  13. M. Moteabbed, S. Espana, H. Paganetti, Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy, Phys. Med. Biol. 56 (2011) 1063-1082, https://doi.org/10.1088/0031-9155/56/4/012.
  14. L. Nenoff, M. Priegnitz, G. Janssens, J. Petzoldt, P. Wohlfahrt, A. Trezza, J. Smeets, G. Pausch, C. Richter, Sensitivity of a prompt-gamma slit-camera to detect range shifts for proton treatment verification, Radiother. Oncol. 125 (2017) 534-540, https://doi.org/10.1016/j.radonc.2017.10.013.
  15. Y. Xie, E.H. Bentefour, G. Janssens, J. Smeets, F. Vander Stappen, L. Hotoiu, L. Yin, D. Dolney, S. Avery, F. O'Grady, D. Prieels, J. McDonough, T.D. Solberg, R.A. Lustig, A. Lin, B.K.K. Teo, Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy, Int. J. Radiat. Oncol. Biol. Phys. 99 (2017) 210-218, https://doi.org/10.1016/j.ijrobp.2017.04.027.
  16. M. Priegnitz, S. Barczyk, L. Nenoff, C. Golnik, I. Keitz, T. Werner, S. Mein, J. Smeets, F. Vander Stappen, G. Janssens, L. Hotoiu, F. Fiedler, D. Prieels, W. Enghardt, G. Pausch, C. Richter, Towards clinical application: prompt gamma imaging of passively scattered proton fields with a knife-edge slit camera, Phys. Med. Biol. 61 (2016) 7881-7905, https://doi.org/10.1088/0031-9155/61/22/7881.
  17. J.H. Park, S.H. Kim, Y. Ku, C.H. Kim, H.R. Lee, J.H. Jeong, S.B. Lee, D.H. Shin, Multi-slit prompt-gamma camera for locating of distal dose falloff in proton therapy, Nucl. Eng. Technol. 51 (2019) 1406-1416, https://doi.org/10.1016/j.net.2019.03.008.
  18. S.H. Kim, J.H. Jeong, Y. Ku, J. Jung, C.H. Kim, Performance prediction of gamma electron vertex imaging (GEVI) system for interfractional range shift detection in spot scanning proton therapy, Nucl. Eng. Technol. 54 (2021) 2213-2220, https://doi.org/10.1016/j.net.2021.12.027.
  19. C. Hyeong Kim, J. Hyung Park, H. Seo, H. Rim Lee, Gamma electron vertex imaging and application to beam range verification in proton therapy, Med. Phys. 39 (2012) 1001-1005, https://doi.org/10.1118/1.3662890.
  20. H.R. Lee, S.H. Kim, J.H. Park, W.G. Jung, H. Lim, C.H. Kim, Prototype system for proton beam range measurement based on gamma electron vertex imaging, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 857 (2017) 82-97, https://doi.org/10.1016/j.nima.2017.03.022.
  21. S.H. Kim, J.H. Jeong, Y. Ku, J. Jung, S. Cho, K. Jo, C.H. Kim, Upgrade of gamma electron vertex imaging system for high-performance range verification in pencil beam scanning proton therapy, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2021.09.001.
  22. C.H. Kim, H.R. Lee, S.H. Kim, J.H. Park, S. Cho, W.G. Jung, Gamma electron vertex imaging for in-vivo beam-range measurement in proton therapy: experimental results, Appl, Phys. Lett. 113 (2018), https://doi.org/10.1063/1.5039448.
  23. F. Roellinghoff, M.H. Richard, M. Chevallier, J. Constanzo, D. Dauvergne, N. Freud, P. Henriquet, F. Le Foulher, J.M. Letang, G. Montarou, C. Ray, E. Testa, M. Testa, A.H. Walenta, Design of a Compton camera for 3D prompt-g imaging during ion beam therapy, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 648 (2011) 87-94, https://doi.org/10.1016/j.nima.2011.01.069.
  24. M. Frandes, A. Zoglauer, V. Maxim, R. Prost, A tracking compton-scattering imaging system for hadron therapy monitoring, IEEE Trans. Nucl. Sci. 57 (2010) 144-150, https://doi.org/10.1109/TNS.2009.2031679.
  25. J.C. Polf, S. Avery, D.S. Mackin, S. Beddar, Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification, Phys. Med. Biol. 60 (2015) 7085-7099, https://doi.org/10.1088/0031-9155/60/18/7085.
  26. J. Krimmer, J.L. Ley, C. Abellan, J.P. Cachemiche, L. Caponetto, X. Chen, M. Dahoumane, D. Dauvergne, N. Freud, B. Joly, D. Lambert, L. Lestand, J.M. Letang, M. Magne, H. Mathez, V. Maxim, G. Montarou, C. Morel, M. Pinto, C. Ray, V. Reithinger, E. Testa, Y. Zoccarato, Development of a Compton camera for medical applications based on silicon strip and scintillation detectors, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 787 (2015) 98-101, https://doi.org/10.1016/j.nima.2014.11.042.
  27. D. MacKin, S. Peterson, S. Beddar, J. Polf, Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy, Phys. Med. Biol. 57 (2012) 3537-3553, https://doi.org/10.1088/0031-9155/57/11/3537.
  28. E. Draeger, D. Mackin, S. Peterson, H. Chen, S. Avery, S. Beddar, J.C. Polf, 3D prompt gamma imaging for proton beam range verification, Phys. Med. Biol. 63 (2018), https://doi.org/10.1088/1361-6560/aaa203.
  29. C. Richter, G. Pausch, S. Barczyk, M. Priegnitz, I. Keitz, J. Thiele, J. Smeets, F. Vander Stappen, L. Bombelli, C. Fiorini, L. Hotoiu, I. Perali, D. Prieels, W. Enghardt, M. Baumann, First clinical application of a prompt gamma based in vivo proton range verification system, Radiother. Oncol. 118 (2016) 232-237, https://doi.org/10.1016/j.radonc.2016.01.004.
  30. J.H. Park, S.H. Kim, Y. Ku, H.S. Lee, C.H. Kim, D.H. Shin, J.H. Jeong, Comparison of knife-edge and multi-slit camera for proton beam range verification by Monte Carlo simulation, Nucl. Eng. Technol. 51 (2019) 533-538, https://doi.org/10.1016/j.net.2018.10.002.
  31. J. Petzoldt, G. Janssens, L. Nenoff, C. Richter, J. Smeets, Correction of geometrical effects of a knife-edge slit camera for prompt gamma-based range verification in proton therapy, Instruments 2 (2018) 25, https://doi.org/10.3390/instruments2040025.
  32. Y. Xing, B. Macq, Improvement of Bragg peak shift estimation using dimensionality reduction techniques and predictive linear modeling, 18, https://doi.org/10.1117/12.2285608, 2017.
  33. Y. Ku, J. Jung, C.H. Kim, New algorithm to estimate proton beam range for multi-slit prompt-gamma camera, Nucl. Eng. Technol. 54 (2022) 3422-3428, https://doi.org/10.1016/j.net.2022.04.019.
  34. D.A. Gedcke, W.J. McDonald, A constant fraction of pulse height trigger for optimum time resolution, Nucl. Instrum. Methods 55 (1967) 377-380, https://doi.org/10.1016/0029-554X(67)90145-0.
  35. C.H. Min, H.R. Lee, C.H. Kim, S.B. Lee, Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy, Med. Phys. 39 (2012) 2100-2107, https://doi.org/10.1118/1.3694098.
  36. H.J. Choi, J.W. Jang, W.G. Shin, H. Park, S. Incerti, C.H. Min, Development of integrated prompt gamma imaging and positron emission tomography system for in vivo 3-D dose verification: a Monte Carlo study, Phys. Med. Biol. 65 (2020), https://doi.org/10.1088/1361-6560/ab857c.
  37. R. Zhang, W.D. Newhauser, Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation, Phys. Med. Biol. 54 (2009) 1383-1395, https://doi.org/10.1088/0031-9155/54/6/001.
  38. L. Zhao, I.J. Das, Gafchromic EBT film dosimetry in proton beams, Phys. Med. Biol. 55 (2010), https://doi.org/10.1088/0031-9155/55/10/N04.
  39. F. Hueso-Gonzalez, M. Rabe, T.A. Ruggieri, T. Bortfeld, J.M. Verburg, A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy, Phys. Med. Biol. 63 (2018), https://doi.org/10.1088/1361-6560/aad513.
  40. S.H. Kim, J.H. Park, Y. Ku, H.S. Lee, Y. Kim, C.H. Kim, J.H. Jeong, Improvement of statistics in proton beam range measurement by merging prompt gamma distributions: a preliminary study, J. Radiat. Prot. Res. 44 (2019) 1-7, https://doi.org/10.14407/jrpr.2019.44.1.1.
  41. C. Hahn, J. Eulitz, N. Peters, P. Wohlfahrt, W. Enghardt, C. Richter, A. Luhr, Impact of range uncertainty on clinical distributions of linear energy transfer and biological effectiveness in proton therapy, Med. Phys. 47 (2020) 6151-6162, https://doi.org/10.1002/mp.14560.