DOI QR코드

DOI QR Code

3차원 토석류 수치해석을 통한 원통형 대책구조물의 배치조건에 따른 에너지 저감효과 분석

Analysis on Effect of Energy Mitigation by Arrangement of Cylindrical Countermeasures through 3D Debris Flow Numerical Analysis

  • 김범준 (강릉원주대학교 방재연구소) ;
  • 윤찬영 (강릉원주대학교 토목공학과)
  • 투고 : 2022.11.24
  • 심사 : 2023.05.10
  • 발행 : 2023.10.01

초록

본 연구에서는 원통형 대책구조물의 토석류 에너지 저감효과를 확인하기 위해, 대책구조물이 설치된 실제 규모의 계곡부를 수치적으로 모사한 후에 대책구조물의 배치조건을 변화시켜가면서 토석류 수치해석을 수행하였다. 해석단면은 강원도 진부면 실규모 실험장에서 측량된 지상 LiDAR 데이터를 토대로 계곡부를 모델링하였고, 해석은 ABAQUS (Ver. 2021)의 Smooth Particle Hydrodynamics (SPH) 기법을 이용하여 토석류-구조물의 상호 흐름거동을 모사하였다. 해석결과, 대책구조물이 설치되지 않는 조건에서의 흐름속도는 기존 실규모 토석류 실험결과와 유사한 흐름속도 변화를 보이는 것으로 나타났으며, 원통형 대책구조물을 설치하면 토석류의 속도를 크게 감소시키는 것으로 나타났다. 또한, 대책구조물을 높이면 토석류의 흐름저항이 증가함에 따라 하류부의 에너지 저감효과를 더욱 증가시키는 것으로 나타났다.

In this study, to investigate an energy reduction effect by field application of cylindrical baffle arrays, the 3D Debris flow numerical analysis was conducted with various baffle configurations for the simulation of a real-scale valley, where the cylindrical baffle arrays were installed. For this, the valley of the watershed was modeled using terrestrial LiDAR data from the real-scale experiment site. Numerical analysis simulated the flow behavior of debris flow and the structures using Smooth Particle Hydrodynamics (SPH) technique of ABAQUS (Ver. 2021). The numerical analysis results that the case without cylindrical baffle arrays had a similar velocity change to that of the real-scale experiment. Also, the installation of baffles significantly reduced the frontal velocity of debris flow. Furthermore, increasing the baffle height increased the downstream energy reduction because of the higher flow impedance of taller baffles.

키워드

과제정보

본 연구는 2021년도 정부(교육부)의 재원으로 한국연구재단의 기초연구사업(2021R1A6A1A03044326, 2021 R1A6A3A01086753)의 지원을 받았습니다. 이에 감사드립니다. 본 논문은 2022 CONVENTION 논문을 수정·보완하여 작성되었습니다.

참고문헌

  1. Choi, C. E., Ng, C. W. W., Song, D., Kwan, J. H. S., Shiu, H. Y. K., Ho, K. K. S. and Koo, R. C. H. (2014). "Flume investigation of landslide debris-resisting baffles." Canadian Geotechnical Journal, CGS, Vol. 51, No. 5, pp. 540-553, https://doi.org/10.1139 /cgj-2013-0115.  https://doi.org/10.1139/cgj-2013-0115
  2. Fei, J., Jie, Y., Sun, X. and Chen, X. (2020). "Experimental investigation on granular flow past baffle piles and numerical simulation using a μ(I)-rheology-based approach." Powder Technology, Elsevier, Vol. 359, pp. 36-46, https://doi.org/10.1016/j.powtec.2019.09.069. 
  3. Hu, H., Zhou, G. G. D., Song, D., Cui, K. F. E., Huang, Y., Choi, C. E. and Chen, H. (2020). "Effect of slit size on the impact load against debris flow mitigation dams." Engineering Geology, Elsevier, Vol. 274, 105764, https://doi.org/10.1016/j.enggeo.2020.105764. 
  4. Hunger, O. and Morgenstern, N. R. (1984). "High velocity rings shear tests on sand." Geotechnique, ICE, Vol. 34 No. 3, pp. 415-421, https://doi.org/10.1680/geot.1984.34.3.415. 
  5. Jakob, M. (2005). "A size classification for debris flows." Engineering Geology, Elsevier, Vol. 79, Nos. 3-4, pp. 151-161, https://doi.org/10.1016/j.enggeo.2005.01.006. 
  6. Jun, K. J., Lee, S. D., Kim, G. H., Lee, S. W. and Yune, C. Y. (2015). "Verification of countermeasures by velocity estimation of real scale debris flow test." Proceedings of the 6th International Conference on Debris flow Hazard Mitigation: Mechanics, Prediction and Assessment (DFHM6), Tsukuba, Japan, 22-25 June. 
  7. Kim, B. J. (2021). Experimental and numerical study on effect of cylindrical baffles on debris flow behavior, Ph.D. Dissertation, Gangneung-Wonju National University, Korea (in Korean). 
  8. Kim, B. J., Han, K. D., Choi, C. E. and Yune, C. Y. (2019). "An experimentalstudy on cylindrical countermeasuresfor dissipation of debris flow energy." Journal of Korean Geo-Environmental Society, KGES, Vol. 20, No. 1, pp. 57-65, https://doi.org/10.14481/jkges.2019.20.1.57 (in Korean). 
  9. Kim, B. J. and Yune, C. Y. (2022). "Flume investigation of cylindrical baffles on landslide debris energy dissipation." Landslides, Springer, Vol. 19, pp. 3043-3060, https://doi.org/10.1007/s10346-022-01945-0. 
  10. Lee, K. W., Kim, Y. M., Ko, J. Y. and Jeong, S. S. (2019). "Astudy on the debris flow-induced impact force on check dam with-and without-entrainment." Computers and Geotechnics, Elsevier, Vol. 113, 103104, https://doi.org/10.1016/j.compgeo.2019.103104. 
  11. Lee, K. W., Park, H. D. and Jeong, S. S. (2016). "A proposed analytical model for the debrisflow with erosion and entrainment of soil layer." Journal of the Korean Geotechnical Society, KGS, Vol. 32, No. 10, pp. 17-29, https://doi.org/10.7843/kgs.2016.32.10.17 (in Korean). 
  12. Leonardi, A., Goodwin, S. R. and Pirulli, M. (2019). "The force exerted by granular flows on slit-dams." Acta Geotechnica, Springer, Vol. 14, No. 6, pp. 1949-1963, https://doi.org/10.1007/s11440-019-00842-6. 
  13. Li, S., Peng, C., Wu, W., Wang, S., Chen, X., Chen, J., Zhou, G. G. D. and Chitneedi, B. K. (2020). "Role of baffle shape on debris flow impact in step-pool channel: an SPH study." Landslides, Springer, Vol. 17, No. 21, pp. 2099-2011, https://doi.org/10.1007/s10346-020-01410-w. 
  14. Ng, C. W. W., Choi, C. E., Song, D., Kwan, J. S. H., Koo, R. C. H., Shiu, H. Y. K. and Ho, K. K. S. (2015). "Physical modelling of baffles influence on landslide debris mobility." Landslides, Springer, Vol. 12, No. 1, pp. 627, https://doi.org/10.1007/s10346-014-0476-y. 
  15. Song, D., Choi, C. E., Ng, C. W. W., Zhou, G. G. D., Kwan,J. S. H., Sze, H. Y. and Zheng, Y. (2019). "Load-attenuation mechanisms of flexible barrier subjected to bouldery debris flow impact." Landslides, Springer, Vol. 16, No. 12, pp. 2321-2334, https://doi.org/10.1007/s10346-019-01243-2. 
  16. Wang, F., Chen, X. and Chen, J. (2017a). "Experimental study on the energy dissipation characteristics of debris flow deceleration baffles." Journal of Mountain Science, Springer, Vol. 14, No. 10, pp. 1951-1960, https://doi.org/10.1007/s11629-016-3868-8. 
  17. Wang, F., Chen, X., Chen, J. and You, Y. (2017b). "Experimental study on a debris-flow drainage channel with different types of energy dissipation baffles." The Journal of Engineering Geology, Elsevier, Vol. 220, pp. 43-51, https://doi.org/10.1016/j.enggeo.2017.01.014. 
  18. Wang, Y., Liu, X., Yao, C. and Li, Y. (2019). "Debris-flow impact on pier with different cross-sectional shapes." Journal of Hydraulic Engineering, ASCE, Vol. 146, No. 1, 04019045, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001656. 
  19. Yang, E, Bui, H. H., Nguyen, G. D., Choi, C. E., Ng, C. W. W., Sterck, H. D. and Bouazza, A. (2021). "Numerical investigation of the mechanism of granular flow impact on rigid control structures." Acta Geotechnica, Springer, Vol. 16, No. 8, pp. 2505-2527, https://doi.org/10.1007/s11440-021-01162-4.