Acknowledgement
This study was part of a PhD thesis and was financially supported by the National Institute for Medical Research Development (NIMAD, No. 971155), Tehran, Iran. We would like to thank the staff of the laboratory of reproductive medicine.
References
- Igarashi H, Takahashi T, Nagase S. Oocyte aging underlies female reproductiveaging: biological mechanisms and therapeutic strategies. Reprod Med Biol 2015;14:159-69. https://doi.org/10.1007/s12522-015-0209-5
- Balaban B, Urman B. Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online 2006;12:608-15. https://doi.org/10.1016/S1472-6483(10)61187-X
- Cimadomo D, Fabozzi G, Vaiarelli A, Ubaldi N, Ubaldi FM, Rienzi L. Impact of maternal age on oocyte and embryo competence. Front Endocrinol (Lausanne) 2018;9:327.
- Labarta E, de Los Santos MJ, Escriba MJ, Pellicer A, Herraiz S. Mitochondria as a tool for oocyte rejuvenation. Fertil Steril 2019;111:219-26. https://doi.org/10.1016/j.fertnstert.2018.10.036
- Amato P, Tachibana M, Sparman M, Mitalipov S. Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases. Fertil Steril 2014;101:31-5. https://doi.org/10.1016/j.fertnstert.2013.11.030
- Zhang J, Zhuang G, Zeng Y, Grifo J, Acosta C, Shu Y, et al. Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF. Reprod Biomed Online 2016;33:529-33. https://doi.org/10.1016/j.rbmo.2016.07.008
- Ou XH, Sun QY. Mitochondrial replacement techniques or therapies (MRTs) to improve embryo development and to prevent mitochondrial disease transmission. J Genet Genomics 2017;44:371-4. https://doi.org/10.1016/j.jgg.2017.07.003
- Wu K, Zhong C, Chen T, Zhang X, Tao W, Zhang J, et al. Polar bodies are efficient donors for reconstruction of human embryos for potential mitochondrial replacement therapy. Cell Res 2017;27:1069-72. https://doi.org/10.1038/cr.2017.67
- Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, et al. Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell 2014;157:1591-604. https://doi.org/10.1016/j.cell.2014.04.042
- Wakayama T, Yanagimachi R. The first polar body can be used for the production of normal offspring in mice. Biol Reprod 1998;59:100-4. https://doi.org/10.1095/biolreprod59.1.100
- Zhang SP, Lu CF, Gong F, Xie PY, Hu L, Zhang SJ, et al. Polar body transfer restores the developmental potential of oocytes to blastocyst stage in a case of repeated embryo fragmentation. J Assist Reprod Genet 2017;34:563-71. https://doi.org/10.1007/s10815-017-0881-y
- Ma H, O'Neil RC, Marti Gutierrez N, Hariharan M, Zhang ZZ, He Y, et al. Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 2017;20:112-9. https://doi.org/10.1016/j.stem.2016.10.001
- Daughtry BL, Chavez SL. Time-lapse imaging for the detection of chromosomal abnormalities in primate preimplantation embryos. Methods Mol Biol 2018;1769:293-317. https://doi.org/10.1007/978-1-4939-7780-2_19
- Faramarzi A, Khalili MA, Ashourzadeh S, Palmerini MG. Does rescue in vitro maturation of germinal vesicle stage oocytes impair embryo morphokinetics development? Zygote 2018;26:430-4. https://doi.org/10.1017/S0967199418000515
- Aguilar J, Rubio I, Munoz E, Pellicer A, Meseguer M. Study of nucleation status in the second cell cycle of human embryo and its impact on implantation rate. Fertil Steril 2016;106:291-9. https://doi.org/10.1016/j.fertnstert.2016.03.036
- Fesahat F, Dehghani Firouzabadi R, Faramarzi A, Khalili MA. The effects of different types of media on in vitro maturation outcomes of human germinal vesicle oocytes retrieved in intracytoplasmic sperm injection cycles. Clin Exp Reprod Med 2017;44:79-84. https://doi.org/10.5653/cerm.2017.44.2.79
- Tachibana M, Sparman M, Mitalipov S. Chromosome transfer in mature oocytes. Nat Protoc 2010;5:1138-47. https://doi.org/10.1038/nprot.2010.75
- Omidi M, Khalili MA, Ashourzadeh S, Rahimipour M. Zona pellucida birefringence and meiotic spindle visualisation of human oocytes are not influenced by IVM technology. Reprod Fertil Dev 2014;26:407-13. https://doi.org/10.1071/RD13001
- Roesner S, Dietrich JE, Weigert J, Montag M, Toth B, Strowitzki T. Time-lapse imaging reveals differences in growth dynamics of embryos after in vitro maturation compared with conventional stimulation. Fertil Steril 2017;107:606-12. https://doi.org/10.1016/j.fertnstert.2016.12.026
- Basile N, Vime P, Florensa M, Aparicio Ruiz B, Garcia Velasco JA, Remohi J, et al. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Hum Reprod 2015;30:276-83. https://doi.org/10.1093/humrep/deu331
- Basile N, Nogales Mdel C, Bronet F, Florensa M, Riqueiros M, Rodrigo L, et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril 2014;101:699-704. https://doi.org/10.1016/j.fertnstert.2013.12.005
- Wolf DP, Mitalipov N, Mitalipov S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med 2015;21:68-76. https://doi.org/10.1016/j.molmed.2014.12.001
- Jones GM, Cram DS, Song B, Magli MC, Gianaroli L, Lacham-Kaplan O, et al. Gene expression profiling of human oocytes following in vivo or in vitro maturation. Hum Reprod 2008;23:1138-44. https://doi.org/10.1093/humrep/den085
- Magli MC, Ferraretti AP, Crippa A, Lappi M, Feliciani E, Gianaroli L. First meiosis errors in immature oocytes generated by stimulated cycles. Fertil Steril 2006;86:629-35. https://doi.org/10.1016/j.fertnstert.2006.02.083
- Nogueira D, Staessen C, Van de Velde H, Van Steirteghem A. Nuclear status and cytogenetics of embryos derived from in vitro-matured oocytes. Fertil Steril 2000;74:295-8. https://doi.org/10.1016/S0015-0282(00)00642-7
- Liu S, Kwon M, Mannino M, Yang N, Renda F, Khodjakov A, et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 2018;561:551-5. https://doi.org/10.1038/s41586-018-0534-z
- Mantikou E, Wong KM, Repping S, Mastenbroek S. Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochim Biophys Acta 2012;1822:1921-30. https://doi.org/10.1016/j.bbadis.2012.06.013
- Maurer M, Ebner T, Puchner M, Mayer RB, Shebl O, Oppelt P, et al. Chromosomal aneuploidies and early embryonic developmental arrest. Int J Fertil Steril 2015;9:346-53.
- Dunham-Snary KJ, Ballinger SW. Genetics. Mitochondrial-nuclear DNA mismatch matters. Science 2015;349:1449-50. https://doi.org/10.1126/science.aac5271
- Reinhardt K, Dowling DK, Morrow EH. Medicine. Mitochondrial replacement, evolution, and the clinic. Science 2013;341:1345-6. https://doi.org/10.1126/science.1237146
- Yamada M, Egli D. Genome transfer prevents fragmentation and restores developmental potential of developmentally compromised postovulatory aged mouse oocytes. Stem Cell Reports 2017;8:576-88. https://doi.org/10.1016/j.stemcr.2017.01.020
- Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 2013;493:632-7. https://doi.org/10.1038/nature11800
- Reznichenko AS, Huyser C, Pepper MS. Mitochondrial transfer: implications for assisted reproductive technologies. Appl Transl Genom 2016;11:40-7. https://doi.org/10.1016/j.atg.2016.10.001