DOI QR코드

DOI QR Code

Elastic buckling performance of FG porous plates embedded between CNTRC piezoelectric patches based on a novel quasi 3D-HSDT in hygrothermal environment

  • Yujie Zhang (School of Environmental Engineering, Wuhan Textile University) ;
  • Zhihang Guo (School of Environmental Engineering, Wuhan Textile University) ;
  • Yimin Gong (School of Environmental Engineering, Wuhan Textile University) ;
  • Jianzhong Shi (School of Environmental Engineering, Wuhan Textile University) ;
  • Mohamed Hechmi El Ouni (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Farhan Alhosny (Mechanical Engineering Department, UAE University)
  • Received : 2023.03.03
  • Accepted : 2023.06.08
  • Published : 2023.08.25

Abstract

The under-evaluation structure includes a functionally graded porous (FGP) core which is confined by two piezoelectric carbon nanotubes reinforced composite (CNTRC) layers. The whole structure rests on the Pasternak foundation. Using quasi-3D hyperbolic shear deformation theory, governing equations of a sandwich plate are driven. Moreover, face sheets are subjected to the electric field and the whole model is under thermal loading. The properties of all layers alter continuously along with thickness direction due to the CNTs and pores distributions. By conducting the current study, the results emerged in detail to assess the effects of different parameters on buckling of structure. As instance, it is revealed that highest and lowest critical buckling load and consequently stiffness, is due to the V-A and A-V CNTs dispersion type, respectively. Furthermore, it is revealed that by porosity coefficient enhancement, critical buckling load and consequently, stiffness reduces dramatically. Current paper results can be used in various high-tech industries as aerospace factories.

Keywords

Acknowledgement

The fifth author extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/6/44.

References

  1. Adhikari, B., Dash, P. and Singh, B.N. (2020), "Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory", Compos. Struct., 251, 112597. https://doi.org/10.1016/j.compstruct.2020.112597.
  2. Alhaifi, K., Arshid, E. and Khorshidvand, A.R. (2021), "Large deflection analysis of functionally graded saturated porous rectangular plates on nonlinear elastic foundation via GDQM", Steel Compos. Struct., 39(6), 809. https://doi.org/10.12989/SCS.2021.39.6.795.
  3. Alhaifi, K., Khorshidvand, A.R., Al-Masoudy, M.M., Arshid, E. and Madani, S.H. (2023), "A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement", Struct. Eng. Mech., 85(3), 432. https://doi.org/10.12989/SEM.2023.85.3.419.
  4. Amir, S., Khorasani, M. and BabaAkbar-Zarei, H. (2018), "Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory", J. Sandw. Struct. Mater., 109963621879538. https://doi.org/10.1177/1099636218795385.
  5. Amir, S., Arshid, E. and Ghorbanpour Arani, M.R. (2019), "Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multiphysical pre loads", Smart Struct. Syst., 23(5), 429-447. https://doi.org/10.12989/sss.2019.23.5.429.
  6. Amir, S., Arshid, E. and Khoddami Maraghi, Z. (2020a), "Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium", Smart Struct. Syst., 25(5), 581-592. https://doi.org/10.12989/sss.2020.25.5.581.
  7. Amir, S., Arshid, E., Khoddami Maraghi, Z., Loghman, A. and Ghorbanpour Arani, A. (2020b), "Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate", J. Vib. Control, 26(17-18), 1523-1537. https://doi.org/10.1177/1077546319899203.
  8. Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A. and Loghman, A. (2020c), "Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment", J. Therm. Stress., 43(2), 133-156. https://doi.org/10.1080/01495739.2019.1660601.
  9. Amir, S., BabaAkbar-Zarei, H. and Khorasani, M. (2020d), "Flexoelectric vibration analysis of nanocomposite sandwich plates", Mech. Based Des. Struct., 48(2), 146-163. https://doi.org/10.1080/15397734.2019.1624175.
  10. Anh, V.T.T., Huong, V.T., Nguyen, P.D. and Duc, N.D. (2021), "Nonlinear dynamic analysis of porous graphene platelet-reinforced composite sandwich shallow spherical shells", Mech. Compos. Mater., 57(5), 609-622. https://doi.org/10.1007/S11029-021-09983-W/METRICS.
  11. Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125(January), 220-233. https://doi.org/10.1016/j.tws.2018.01.007.
  12. Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019a), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., 70(1), 97-112. https://doi.org/10.12989/sem.2019.70.1.097.
  13. Arshid, E., Kiani, A. and Amir, S. (2019b), "Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Mater. Des. Appl., 233(10), 2140-2159. https://doi.org/10.1177/1464420719832626.
  14. Arshid, E., Kiani, A., Amir, S. and Zarghami Dehaghani, M. (2019c), "Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(16), 5659-5675. https://doi.org/10.1177/0954406219850598.
  15. Arshid, E., Amir, S. and Loghman, A. (2020a), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180(March), 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
  16. Arshid, E., Amir, S. and Loghman, A. (2020b), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 109963622095502. https://doi.org/10.1177/1099636220955027.
  17. Arshid, H., Khorasani, M., Soleimani-Javid, Z., Dimitri, R. and Tornabene, F. (2020c), "Quasi-3D hyperbolic shear deformation theory for the free vibration study of honeycomb microplates with graphene nanoplatelets-reinforced epoxy skins", Molecules, 25(21), 5085. https://doi.org/10.3390/molecules25215085.
  18. Arshid, E. and Amir, S. (2021), "Size-dependent vibration analysis of fluid-infiltrated porous curved microbeams integrated with reinforced functionally graded graphene platelets face sheets considering thickness stretching effect", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 146442072098555. https://doi.org/10.1177/1464420720985556.
  19. Arshid, E., Amir, S. and Loghman, A. (2021a), "Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates", Aerosp. Sci. Technol., 106561. https://doi.org/10.1016/j.ast.2021.106561.
  20. Arshid, E., Arshid, H., Amir, S. and Mousavi, S.B. (2021b), "Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory", Arch. Civil Mech. Eng., 21(1), 6. https://doi.org/10.1007/s43452-020-00150-x.
  21. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021c), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y.
  22. Arshid, E., Soleimani-Javid, Z., Amir, S. and Duc, N.D. (2022), "Higher-order hygro-magneto-electro-thermomechanical analysis of FG-GNPs-reinforced composite cylindrical shells embedded in PEM layers", Aerosp. Sci. Technol., 126, 107573. https://doi.org/10.1016/J.AST.2022.107573.
  23. Arshid, E., Amir, S. and Loghman, A. (2023a), "Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs", Arch. Civil Mech. Eng., 23(2), 100. https://doi.org/10.1007/s43452-023-00624-8.
  24. Arshid, E., Amir, S. and Loghman, A. (2023b), "On the vibrations of FG GNPs-RPN annular plates with piezoelectric/metallic coatings on Kerr elastic substrate considering size dependency and surface stress effects", Acta Mechanica, 1-42. https://doi.org/10.1007/S00707-023-03593-4.
  25. Arshid, E., Momeni Nia, M.J., Ghorbani, M.A., Civalek, O . and Kumar, A. (2023c), "On the poroelastic vibrations of lightweight FGSP doubly-curved shells integrated with GNPs-reinforced composite coatings in thermal atmospheres", Appl. Math. Modell., 124, 122-141. https://doi.org/10.1016/j.apm.2023.07.036.
  26. Asgari, G.R., Arabali, A., Babaei, M. and Asemi, K. (2022), "Dynamic instability of sandwich beams made of isotropic core and functionally graded graphene platelets-reinforced composite face sheets", Int. J. Struct. Stabil. Dyn., 22(8). https://doi.org/10.1142/S0219455422500924.
  27. Babaei, M., Asemi, K. and Safarpour, P. (2019), "Buckling and static analyses of functionally graded saturated porous thick beam resting on elastic foundation based on higher order beam theory", Iran. J. Mech. Eng. Transact. ISME, 20(1), 94-112.
  28. Babaei, M., Hajmohammad, M. H. and Asemi, K. (2020), "Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity", Aerosp. Sci. Technol., 96, 105524. https://doi.org/10.1016/j.ast.2019.105524.
  29. Babaei, M., Kiarasi, F., Asemi, K., Dimitri, R. and Tornabene, F. (2022a), "Transient thermal stresses in fg porous rotating truncated cones reinforced by graphene platelets", Appl. Sci., 12(8), 3932. https://doi.org/10.3390/app12083932.
  30. Babaei, M., Kiarasi, F., Asemi, K. and Hosseini, M. (2022b), "Functionally graded saturated porous structures: A review", J. Comput. Appl. Mech., 53(2), 297-308. https://doi.org/10.22059/JCAMECH.2022.342710.719.
  31. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009.
  32. Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  33. Bi, R., Gao, J. and Allahyari, S. (2021), "Higher order plate theory for buckling analysis of plates based on exact solution", Steel Compos. Struct., 40(3), 459. https://doi.org/10.12989/SCS.2021.40.3.451.
  34. Chan, D.Q., Van Thanh, N., Khoa, N.D. and Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837.
  35. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
  36. Dat, N.D., Quan, T.Q., Mahesh, V. and Duc, N.D. (2020), "Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment", Int. J. Mech. Sci., 186, 105906. https://doi.org/10.1016/j.ijmecsci.2020.105906.
  37. Dat, N.D., Quan, T.Q. and Duc, N.D. (2021), "Nonlinear thermal dynamic buckling and global optimization of smart sandwich plate with porous homogeneous core and carbon nanotube reinforced nanocomposite layers", Eur. J. Mech. A Solids, 90, 104351. https://doi.org/10.1016/J.EUROMECHSOL.2021.104351
  38. Dat, N.D., Thanh, N. Van, MinhAnh, V. and Duc, N.D. (2022), "Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer", Mech. Adv. Mater. Struct., 29(10), 1431-1448. https://doi.org/10.1080/15376494.2020.1822476.
  39. Dinh Dat, N., Quoc Quan, T. and Dinh Duc, N. (2022), "Vibration analysis of auxetic laminated plate with magneto-electro-elastic face sheets subjected to blast loading", Compos. Struct., 280(1), 114925. https://doi.org/10.1016/j.compstruct.2021.114925.
  40. Duc, N.D. (2014), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Vietnam.
  41. Duc, N.D., Quang, V.D., Nguyen, P.D. and Chien, T.M. (2018), "Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads", J. Appl. Comput. Mech., 4(4), 245-259. https://doi.org/10.22055/jacm.2018.23219.1151.
  42. Ebrahimi, F.M.V. (2019), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223.
  43. Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068.
  44. Esfandiari, M., Haghighi, H. and Urgessa, G. (2023), "Machine learning-based optimum reinforced concrete design for progressive collapse", Electr. J. Struct. Eng., 23(2), 1-8. https://doi.org/10.56748/ejse.233642.
  45. Farhangi, V., Zadehmohamad, M., Monshizadegan, A., Izadifar, M.A., Moradi, M.J. and Dabiri, H. (2023), "Effects of geogrid reinforcement on the backfill of integral bridge abutments", Buildings, 13(4), 853. https://doi.org/10.3390/BUILDINGS13040853.
  46. Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
  47. Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M. (2021), "Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets", Steel Compos. Struct., 41(6), 805-820. https://doi.org/10.12989/SCS.2021.41.6.805.
  48. Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", Comput. Mater. Continua, 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660.
  49. Han, X., Liu, G.R., Lam, K.Y. and Ohyoshi, T. (2000), "A quadratic layer element for analyzing stress waves in fgms and its application in material characterization", J. Sound Vib., 236(2), 307-321. https://doi.org/10.1006/jsvi.2000.2966.
  50. Han, X., Liu, G.R. and Lam, K.Y. (2001), "Transient waves in plates of functionally graded materials", Int. J. Numer. Meth. Eng., 52(8), 851-865. https://doi.org/10.1002/nme.237.
  51. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  52. Ikbarieh, A., Izadifar, M. A., Abu-Farsakh, M. Y. and Voyiadjis, G. Z. (2023), "A parametric study of embankment supported by geosynthetic reinforced load transfer platform and timber piles tip on sand", Transp. Geotech., 38, 100901. https://doi.org/10.1016/J.TRGEO.2022.100901.
  53. Izadifar, M., Mousavi, H., Zadehmohamad, M. and Mir Mohammad Hosseini, S.M. (2021), "Evaluating the isolation effect of the soil-rubber mixture (SRM) around buried pipes during ground vibrations", 7th International Conference on Civil Engineering, Architecture and Urban. https://doi.org/10.6084/m9.figshare.14998317.
  54. Izadifar, M., Luo, N., Abu-Farsakh, M. Y. and Chen, S. (2023), "Performance evaluation of design methods for geosynthetic-reinforced pile-supported embankments", Transp. Res. Record: J. Transp. Res. Board, 036119812311659. https://doi.org/10.1177/03611981231165994.
  55. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333.
  56. Kargar, J., Ghorbanpour Arani, A., Arshid, E. and Irani Rahaghi, M. (2021), "Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation", Struct. Eng. Mech., 78(5), 572. https://doi.org/10.12989/SEM.2021.78.5.557.
  57. Khoddami Maraghi, Z., Amir, S. and Arshid, E. (2022), "On the natural frequencies of smart circular plates with magneto-rheological fluid core embedded between magnetostrictive patches on Kerr elastic substance", Mech. Based Des. Struct., 1-18. https://doi.org/10.1080/15397734.2022.2156885.
  58. Khoei, A.R., Youzi, M. and Eshlaghi, G.T. (2022), "Mechanical properties and γ/γ' interfacial misfit network evolution: A study towards the creep behavior of Ni-based single crystal superalloys", Mech. Mater., 171, 104368. https://doi.org/10.1016/j.mechmat.2022.104368.
  59. Khorasani, M., Eyvazian, A., Karbon, M., Tounsi, A., Lampani, L., Sebaey, T.A., Khorasani, M., Eyvazian, A., Karbon, M., Tounsi, A., Lampani, L. and Sebaey, T.A. (2020a), "Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects", Smart Struct. Syst., 26(3), 331. https://doi.org/10.12989/SSS.2020.26.3.331.
  60. Khorasani, M., Soleimani-Javid, Z., Arshid, E., Lampani, L. and Civalek, O . (2020b), "Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced epoxy skins with stretching effect", Compos. Struct., 113430. https://doi.org/10.1016/j.compstruct.2020.113430.
  61. Khorasani, M., Lampani, L., Dimitri, R. and Tornabene, F. (2021a), "Thermomechanical buckling analysis of the E&, P-FGM beams integrated by nanocomposite supports immersed in a hygrothermal environment", Molecules, 26(21), 6594. https://doi.org/10.3390/MOLECULES26216594.
  62. Khorasani, M., Soleimani-Javid, Z., Arshid, E., Amir, S. and Civalek, O . (2021b), "Vibration analysis of graphene nanoplatelets' reinforced composite plates integrated by piezo-electromagnetic patches on the piezo-electromagnetic media", Wave. Random Complex Med., 1-31. https://doi.org/10.1080/17455030.2021.1956017.
  63. Khorasani, M., Elahi, H., Eugeni, M., Lampani, L. and Civalek, O. (2022), "Vibration of FG porous three-layered beams equipped by agglomerated nanocomposite patches resting on vlasov's foundation", Transp. Porous Med., 142(1-2), 157-186. https://doi.org/10.1007/S11242-021-01658-3/METRICS.
  64. Kianezhad, M., Youzi, M., Vaezi, M. and Nejat Pishkenari, H. (2022), "Rectilinear motion of carbon nanotube on gold surface", Int. J. Mech. Sci., 217, 107026. https://doi.org/10.1016/j.ijmecsci.2021.107026.
  65. Kianezhad, M., Youzi, M., Vaezi, M. and Nejat Pishkenari, H. (2023), "Unidirectional motion of C60-based nanovehicles using hybrid substrates with temperature gradient", Sci. Rep., 13(1), 1100. https://doi.org/10.1038/s41598-023-28245-4.
  66. Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M. and Asemi, K. (2021), "Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 380. https://doi.org/10.12989/ANR.2021.11.4.361.
  67. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/s1359-8368(96)00016-9.
  68. Kiarasi, F., Asadi, A., Babaei, M., Asemi, K. and Hosseini, M. (2022), "Dynamic analysis of functionally graded carbon nanotube (FGCNT) reinforced composite beam resting on viscoelastic foundation subjected to impulsive loading", J. Comput. Appl. Mech., 53(1), 1-23. https://doi.org/10.22059/JCAMECH.2022.339008.693.
  69. Mehar, K. and Panda, S.K. (2017), "Thermal free vibration behavior of fg-cnt reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.
  70. Mehrdad, A., Samadiani, N. and Poormoosa, L. (2013), "Effect of temperature and hydrochloric acid on the intrinsic viscosity of poly(acrylic acid) in aqueous solutions", J. Mole. Liq., 187, 177-182. https://doi.org/10.1016/j.molliq.2013.06.018.
  71. Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683.
  72. Mousavi, S.B., Amir, S., Jafari, A. and Arshid, E. (2021), "Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories ", Adv. Nano Res., 10(3), 251. https://doi.org/10.12989/ANR.2021.10.3.235.
  73. Na, K.S. and Kim, J.H. (2003), "Three-dimensional thermal buckling analysis of functionally graded materials", Compos. Part B Eng., 35(5), 429-437. https://doi.org/10.1016/j.compositesb.2003.11.013.
  74. Najafizadeh, M.M. and Eslami, M.R. (2002), "Buckling analysis of circular plates of functionally graded materials under uniform radial compression", Int. J. Mech. Sci., 44(12), 2479-2493. http://doi.org/10.1016/S0020-7403(02)00186-8.
  75. Quan, T.Q., Van Quyen, N. and Duc, N.D. (2021), "An analytical approach for nonlinear thermo-electro-elastic forced vibration of piezoelectric penta - Graphene plates", Eur. J. Mech. A Solids, 85, 104095. https://doi.org/10.1016/j.euromechsol.2020.104095.
  76. Quan, T.Q., Anh, V.M., Mahesh, V. and Duc, N.D. (2022a), "Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate", Mech. Adv. Mater. Struct., 29(1), 127-137. https://doi.org/10.1080/15376494.2020.1752864.
  77. Quan, T.Q., Ha, D.T.T. and Duc, N.D. (2022b), "Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading", Thin Wall. Struct., 170, 108606. https://doi.org/10.1016/j.tws.2021.108606.
  78. Quang, V.D., Khoa, N.D. and Duc, N.D. (2021), "The effect of structural characteristics and external conditions on the dynamic behavior of shear deformable FGM porous plates in thermal environment", J. Mech. Sci. Technol., 35(8), 3323-3329. https://doi.org/10.1007/S12206-021-0706-X/METRICS.
  79. Rabczuk, T., Ren, H. and Zhuang, X. (2023), Nonlocal Strong Forms of Thin Plate, Gradient Elasticity, Magneto-Electro-Elasticity and Phase Field Fracture by Nonlocal Operator Method, Springer International Publishing.
  80. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  81. Safari, M., Mohammadimehr, M. and H. Ashrafi, (2021), "Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC", Adv. Nano Res., 10(2), 115-128. https://doi.org/10.12989/anr.2021.10.2.115.
  82. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Meth. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
  83. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
  84. Shen, H.S. (2009), "A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators", Compos. Struct., 91(3), 375-384. https://doi.org/10.1016/j.compstruct.2009.06.005.
  85. Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res., 10(1), 25-42. https://doi.org/10.12989/ANR.2021.10.1.025.
  86. Soleimani-Javid, Z., Arshid, E., Amir, S. and Bodaghi, M. (2021a), "On the higher-order thermal vibrations of FG saturated porous cylindrical micro-shells integrated with nanocomposite skins in viscoelastic medium", Defence Technol., 18(8), 1416-1434. https://doi.org/10.1016/J.DT.2021.07.007.
  87. Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S. and Tounsi, A. (2021b), "Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions", Adv. Nano Res., 10(5), 460. https://doi.org/10.12989/ANR.2021.10.5.449.
  88. Thai, T.Q., Zhuang, X. and Rabczuk, T. (2023), "Curved flexo-electric and piezoelectric micro-beams for nonlinear vibration analysis of energy harvesting", Int. J. Solids Struct., 264, 112096. https://doi.org/10.1016/J.IJSOLSTR.2022.112096.
  89. Timoshenko, S.P. and Gere, J.M. (1961), Theory of elastic stability, McGraw-Hill, New York, U.S.A.
  90. Torabipour, A., Asghari, N., Haghighi, H., Yaghoubi, S. and Urgessa, G. (2023), "Assessing effectiveness of shape memory alloys on the response of bolted T-stub connections subjected to cyclic loading", CivilEng, 4(1), 105-133. https://doi.org/10.3390/civileng4010008.
  91. Vel, S.S., Mewer, R.C. and Batra, R.C. (2004), "Analytical solution for the cylindrical bending vibration of piezoelectric composite plates", Int. J. Solids Struct., 41(5-6), 1625-1643. https://doi.org/10.1016/j.ijsolstr.2003.10.012.
  92. Vosoughkhosravi, S., Dixon-Grasso, L. and Jafari, A. (2022), "The impact of LEED certification on energy performance and occupant satisfaction: A case study of residential college buildings", J. Build. Eng., 59, 105097. https://doi.org/10.1016/j.jobe.2022.105097.
  93. Vosoughkhosravi, S. and Jafari, A. (2022a), "Using Wi-Fi position system for developing a privacy-preserving contact tracing system in university campuses", Comput. Civil Eng., 2021, 1236-1244. https://doi.org/10.1061/9780784483893.151.
  94. Vosoughkhosravi, S. and Jafari, A. (2022b), "developing a conceptual passive contact tracing system for commercial buildings using WiFi indoor positioning", Sustainability, 14(16), 10255. https://doi.org/10.3390/su141610255.
  95. Wang, B., Yan, G. and Allahyari, S. (2021), "Optimization and mathematical modelling of multi-layer beam based on sinusoidal theory", Struct. Eng. Mech., 79(1), 116. https://doi.org/10.12989/SEM.2021.79.1.109.
  96. Wu, Q., Chen, H. and Gao, W. (2020), "Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams", Eng. Comput., 36(4), 1739-1750. https://doi.org/10.1007/s00366-019-00794-1.
  97. Yang, J., Liew, K.M. and Kitipornchai, S. (2004), "Dynamic stability of laminated FGM plates based on higher-order shear deformation theory", Comput. Mech., 33(4), 305-315. https://doi.org/10.1007/s00466-003-0533-1.
  98. Zhong, H. and Gu, C. (2006), "Buckling of simply supported rectangular reissner-mindlin plates subjected to linearly varying in-plane loading", J. Eng. Mech., 132(5), 578-581. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:5(578).
  99. Zhuang, X., Guo, H., Alajlan, N., Zhu, H. and Rabczuk, T. (2021), "Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning", Eur. J. Mech. A Solids, 87, 104225. https://doi.org/10.1016/J.EUROMECHSOL.2021.104225