DOI QR코드

DOI QR Code

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan (Wushu and dance department, Shenyang sport university)
  • Received : 2022.09.17
  • Accepted : 2022.11.22
  • Published : 2023.08.25

Abstract

Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.

Keywords

Acknowledgement

The study was supported by Shenyang Sport University key construction subjects in 14th five years plan (Direction of sport health promotion).

References

  1. Aditya Khatokar, J., Vinay, N., Sudhir Bale, A., Nayana, M.A., Harini, R., Suhaas Reddy, V., Soundarya, N., Satheesha, T.Y. and Shivashankar Huddar, A. (2021), "A study on improved methods in Micro-electromechanical systems technology", Mater. Today Proc., 43, 3784-3790. https://doi.org/10.1016/j.matpr.2020.10.993.
  2. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. http://doi.org/10.12989/anr.2018.6.1.039.
  3. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. http://doi.org/10.12989/anr.2018.6.3.219.
  4. Algamili, A.S., Khir, M.H.M., Dennis, J.O., Ahmed, A.Y., Alabsi, S.S., Ba Hashwan, S.S. and Junaid, M.M. (2021), "A review of actuation and sensing mechanisms in MEMS-based sensor devices", Nanosc. Res. Lett., 16(1), 16. https://doi.org/10.1186/s11671-021-03481-7.
  5. Alimoradlu, K. and Zamani, A. (2022), "Hydrophobicity in nanocatalysis", Adv. Nano Res., 12(1), 49-63. http://doi.org/10.12989/ANR.2022.12.1.049.
  6. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.
  7. Alsultan Abdulmajeed, S. (2021), "Assessment of microstructure and surface effects on vibrational characteristics of public transportation", Adv. Nano Res., 11(1), 101-113. http://doi.org/10.12989/ANR.2021.11.1.101.
  8. Angermann, C.E., Assmus, B., Anker, S.D., Brachmann, J., Ertl, G., Kohler, F., Rosenkranz, S., Tschope, C., Adamson, P.B. and Bohm, M. (2018), "Safety and feasibility of pulmonary artery pressure-guided heart failure therapy: rationale and design of the prospective CardioMEMS Monitoring Study for Heart Failure (MEMS-HF)", Clin. Res. Cardiol., 107(11), 991-1002. https://doi.org/10.1007/s00392-018-1281-8.
  9. Arefi, M. and Zenkour, A.M. (2018), "Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory", Steel Compos. Struct., 26(4), 421-437. https://doi.org/10.12989/scs.2018.26.4.421.
  10. Ashraf, M.W., Tayyaba, S. and Afzulpurkar, N. (2011), "Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications", Int. J. Mol. Sci., 12(6), 3648-3704. https://doi.org/10.3390/ijms12063648.
  11. Atmane Hassen, A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. http://doi.org/10.12989/SCS.2015.19.2.369.
  12. Attia, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. http://doi.org/10.12989/SCS.2015.18.1.187.
  13. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/SCS.2019.30.6.603.
  14. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257. http://doi.org/10.12989/anr.2018.6.3.257.
  15. Bassiachvili, E., Stewart, R., Shavezipur, M. and Nieva, P. (2008). "A MEMS capacitive, passively powered heart rate monitor: Design and analysis", 2008 1st Microsystems and Nanoelectronics Research Conference, 15-15 Oct. 2008. https://doi.org/10.1109/MNRC.2008.4683383.
  16. Behdinan, K. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593-603. http://doi.org/10.12989/ANR.2022.12.6.593.
  17. Bellifa, H., Bakora, A., Tounsi, A., Bousahla Abdelmoumen, A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. http://doi.org/10.12989/SCS.2017.25.3.257.
  18. Bennai, R., Atmane Hassen, A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. http://doi.org/10.12989/SCS.2015.19.3.521.
  19. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279. http://doi.org/10.12989/anr.2018.6.3.279.
  20. Benson, B., Sage, A.P. and Cook, G. (1993), "Emerging technology-evaluation methodology: With application to microelectromechanical systems", IEEE T. Eng. Manag., 40(2), 114-123. https://doi.org/10.1109/17.277403.
  21. Cai, T., Zandi, Y., Agdas, A. S., Salmi, A., Issakhov, A. and Roco-Videla, A. (2021), "The compressive strength of concrete retrofitted with wind ash and steel slag pozzolans with a water-cement based polymers", Adv. Concr. Constr., 11(6), 507-519. https://doi.org/10.12989/ACC.2021.11.6.507.
  22. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022), "webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucl. Acids Res., 50(D1), D1123-D1130. https://doi.org/10.1093/nar/gkab957.
  23. Chaht Fouzia, L., Kaci, A., Houari Mohammed Sid, A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. http://doi.org/10.12989/SCS.2015.18.2.425.
  24. Chattopadhyay, M. and Chowdhury, D. (2017), "Design and performance analysis of MEMS capacitive pressure sensor array for measurement of heart rate", Microsyst. Technol., 23(9), 4203-4209. https://doi.org/10.1007/s00542-016-2842-2.
  25. Chen, T., Crosbie Robert, C., Anandkumarb, A., Melville, C. and Chan, J. (2021), "Optimized AI controller for reinforced concrete frame structures under earthquake excitation", Adv. Concr. Constr., 11(1), 1-9. https://doi.org/10.12989/ACC.2021.11.1.001.
  26. Chooruang, K. and Mangkalakeeree, P. (2016), "Wireless heart rate monitoring system using MQTT", Procedia Comput. Sci., 86 160-163. https://doi.org/10.1016/j.procs.2016.05.045.
  27. Dai, W., Zand, Y., Sadighi, A.A., Selmi, A., Roco-Videla, A., Wakil, K. and Issakhov, A. (2021), "The economic and management use of rhododendron petals in potas-sium-ion nano batteries anode via efficient computer simulation", Adv. Nano Res., 10(6), 517-529. http://doi.org/10.12989/ANR.2021.10.6.517.
  28. Dang, W., Xiang, L., Liu, S., Yang, B., Liu, M., Yin, Z., Yin, L. and Zheng, W. (2023), "A feature matching method based on the convolutional neural network", J. Imag. Sci. Technol., 1-11. https://doi.org/10.2352/J.ImagingSci.Technol.2023.67.3.030402
  29. Ebrahimi, F., Kokaba, M., Shaghaghi, G. and Selvamani, R. (2020), "Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions", Adv. Nano Res., 8(2), 169-182. https://doi.org/10.12989/anr.2020.8.2.169.
  30. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837.
  31. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  32. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. http://doi.org/10.12989/anr.2017.5.2.141.
  33. Esparham, A., Moradikhou Amir, B., Andalib Faeze, K. and Avanaki Mohammad, J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Adv. Concr. Constr., 11(3), 219-229. https://doi.org/10.12989/ACC.2021.11.3.219.
  34. Feng, X., Dong, M., Levy, P. and Xu, Y. (2017). "Non-contact Home Health Monitoring Based on Low-Cost High-Performance Accelerometers", 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 17-19 July 2017. https://doi.org/10.1109/CHASE.2017.119.
  35. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  36. Galli, A., Montree, R.J.H., Que, S., Peri, E. and Vullings, R. (2022), "An overview of the sensors for heart rate monitoring used in extramural applications", Sensors, 22(11). https://doi.org/10.3390/s22114035.
  37. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337.
  38. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/SCS.2017.25.2.197.
  39. Gomez-Clapers, J. and Casanella, R. (2012), "A fast and easy-to-use ECG acquisition and heart rate monitoring system using a wireless steering wheel", IEEE Sensors J., 12(3), 610-616. https://doi.org/10.1109/JSEN.2011.2118201.
  40. Guisbiers, G. and Wautelet, M. (2007), "Materials selection for micro-electromechanical systems", Mater. Des., 28(1), 246-248. https://doi.org/10.1016/j.matdes.2005.05.012.
  41. Ha, D.W., Park, H.S., Choi, S.W. and Kim, Y. (2013), "A wireless MEMS-based inclinometer sensor node for structural health monitoring", Sensors, 13(12), 16090-16104. https://doi.org/10.3390/s131216090.
  42. Hamidi, A., Houari, M.S.A., Mahmoud, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235.
  43. Haroun, A., Le, X., Gao, S., Dong, B., He, T., Zhang, Z., Wen, F., Xu, S. and Lee, C. (2021), "Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications", Nano Exp., 2(2), 022005. https://doi.org/10.1088/2632-959x/abf3d4.
  44. Hensen, S.J. (2017), "Measuring physical activity with heart rate monitors", Am. J. Publ. Health, 107(12), e24. https://doi.org/10.2105/ajph.2017.304121.
  45. Hernandez, J.E. and Cretu, E. (2018). "Simple heart rate monitoring system with a MEMS gyroscope for sleep studies", 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 1-3 Nov. 2018. https://doi.org/10.1109/IEMCON.2018.8614753.
  46. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  47. Houari Mohammed Sid, A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. http://doi.org/10.12989/SCS.2016.22.2.257.
  48. Hu, J., Zhang, T., Chen, Y., Xu, P., Zheng, D. and Li, X. (2022), "Area-Selective, In-Situ Growth of Pd-Modified ZnO Nanowires on MEMS Hydrogen Sensors", Nanomaterials, 12(6). https://doi.org/10.3390/nano12061001.
  49. Hu, Z., Ren, L., Wei, G., Qian, Z., Liang, W., Chen, W., Lu, X., Ren, L. and Wang, K. (2023), "Energy flow and functional behavior of individual muscles at different speeds during human walking", IEEE T Neural Syst. Rehabil. Eng., 31, 294-303. https://doi.org/10.1109/TNSRE.2022.3221986.
  50. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  51. Jimenez Morgan, S. and Molina Mora, J.A. (2017), "Effect of heart rate variability biofeedback on sport performance, a systematic review", Appl. Psychophysiol. Biofeedback, 42(3), 235-245. https://doi.org/10.1007/s10484-017-9364-2.
  52. Kaisti, M., Panula, T., Leppanen, J., Punkkinen, R., Jafari Tadi, M., Vasankari, T., Jaakkola, S., Kiviniemi, T., Airaksinen, J., Kostiainen, P., Meriheina, U., Koivisto, T. and Pankaala, M. (2019), "Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation", npj Digital Med., 2(1), 39. https://doi.org/10.1038/s41746-019-0117-x.
  53. Kar Vishesh, R. and Panda Subrata, K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. http://doi.org/10.12989/SCS.2015.18.3.693.
  54. Khan, M.S., Tariq, M.O., Nawaz, M. and Ahmed, J. (2021), "MEMS sensors for diagnostics and treatment in the fight against COVID-19 and other pandemics", IEEE Access, 9, 61123-61149. https://doi.org/10.1109/ACCESS.2021.3073958.
  55. Koester, D.A., Markus, K.W. and Walters, M.D. (1996), "MEMS: Small machines for the microelectronics age", Computer, 29(1), 93-94. https://doi.org/10.1109/2.481497.
  56. Lei, X., Li, Z., Zhong, Y., Li, S., Chen, J., Ke, Y., Lv, S., Huang, L., Pan, Q., Zhao, L., Yang, X., Chen, Z., Deng, Q. and Yu, X. (2022), "Gli1 promotes epithelial-mesenchymal transition and metastasis of non-small cell lung carcinoma by regulating snail transcriptional activity and stability", Acta Pharm. Sinica B, 12(10), 3877-3890. https://doi.org/10.1016/j.apsb.2022.05.024.
  57. Liu, A.A., Zhai, Y., Xu, N., Nie, W., Li, W. and Zhang, Y. (2022), "Region-aware image captioning via interaction learning", IEEE T. Circ. Syst. Video Technol., 32(6), 3685-3696. https://doi.org/10.1109/TCSVT.2021.3107035.
  58. Liu, B., Peng, Y., Jin, Z., Wu, X., Gu, H., Wei, D., Zhu, Y. and Zhuang, S. (2023a), "Terahertz ultrasensitive biosensor based on wide-area and intense light-matter interaction supported by QBIC", Chem. Eng. J., 462, 142347. https://doi.org/10.1016/j.cej.2023.142347.
  59. Liu, M., Zhang, X., Yang, B., Yin, Z., Liu, S., Yin, L. and Zheng, W. (2023b), "Three-dimensional modeling of heart soft tissue motion", Appl. Sci., 13(4), 2493. https://doi.org/10.3390/app13042493.
  60. Luo, G., Xie, J., Liu, J., Zhang, Q., Luo, Y., Li, M., Zhou, W., Chen, K., Li, Z., Yang, P., Zhao, L., Siong Teh, K., Wang, X., Dong, L., Maeda, R. and Jiang, Z. (2023), "Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics", Chem. Eng. J., 451, 138549. https://doi.org/10.1016/j.cej.2022.138549.
  61. Lv, Z. and Kumar, N. (2020), "Software defined solutions for sensors in 6G/IoE", Comput. Commun., 153, 42-47. https://doi.org/10.1016/j.comcom.2020.01.060.
  62. Ma, Z., Zheng, W., Chen, X. and Yin, L. (2021), "Joint embedding VQA model based on dynamic word vector", PeerJ Comput. Sci., 7, e353. https://doi.org/10.7717/peerj-cs.353.
  63. Maheswaran, J., Chellapandian, M. and Kumar, V. (2022), "Behavior of GGBS concrete with pond ash as a partial replacement for sand", Adv. Concr. Constr., 13(3), 233-242. https://doi.org/10.12989/ACC.2022.13.3.233.
  64. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  65. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  66. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: Evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155.
  67. Navi, B.R., Mohammadimehr, M. and Arani, A.G. (2019), "Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory", Steel Compos. Struct., 32(6), 753-767. https://doi.org/10.12989/scs.2019.32.6.753.
  68. Nguyen, T.-V., Mizuki, Y., Tsukagoshi, T., Takahata, T., Ichiki, M. and Shimoyama, I. (2020), "MEMS-based pulse wave sensor utilizing a piezoresistive cantilever", Sensors, 20(4). https://doi.org/10.3390/s20041052.
  69. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002.
  70. Patel, N. (2018), "Heart attack detection and heart rate monitoring using IoT", Int. J. Innov. Adv. Comput. Sci., 7(4), 611-615.
  71. Raj, A., Sathyan, D. and Mini, K.M. (2021), "Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding", Adv. Concr. Constr., 11(2), 151-161. https://doi.org/10.12989/ACC.2021.11.2.151.
  72. Rico-Gonzalez, M., Los Arcos, A., Rojas-Valverde, D., Clemente, F.M. and Pino-Ortega, J. (2020), "A survey to assess the quality of the data obtained by radio-frequency technologies and microelectromechanical systems to measure external workload and collective behavior variables in team sports", Sensors, 20(8). https://doi.org/10.3390/s20082271.
  73. Seshadri, D.R., Li, R.T., Voos, J.E., Rowbottom, J.R., Alfes, C.M., Zorman, C.A. and Drummond, C.K. (2019), "Wearable sensors for monitoring the physiological and biochemical profile of the athlete", npj Digital Med., 2(1), 72. https://doi.org/10.1038/s41746-019-0150-9.
  74. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982.
  75. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32.
  76. Shafiei, N. and Kazemi, M. (2017), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045.
  77. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007.
  78. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008.
  79. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  80. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016c), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.
  81. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  82. Shahram Ghaedi Faramoushjan Hossein Jalalifar, R.K. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concr. Constr., 11(6), 521-529. https://doi.org/10.12989/ACC.2021.11.6.521.
  83. Shariq, M., Pal, S., Chaubey, R. and Masood, A. (2022), "An experimental and analytical study into the strength of hooked-end steel fiber reinforced HVFA concrete", Adv. Concr. Constr., 13(1), 35-43. https://doi.org/10.12989/ACC.2022.13.1.035.
  84. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  85. Sun, Y., Dong, Y., Gao, R., Chu, Y., Zhang, M., Qian, X. and Wang, X. (2018), "Wearable pulse wave monitoring system based on MEMS sensors", Micromachines, 9(2). https://doi.org/10.3390/mi9020090.
  86. Tang, F., Niu, B., Zong, G., Zhao, X. and Xu, N. (2022), "Periodic event-triggered adaptive tracking control design for nonlinear discrete-time systems via reinforcement learning", Neural Netw., 154, 43-55. https://doi.org/10.1016/j.neunet.2022.06.039.
  87. Tang, Y., Liu, S., Deng, Y., Zhang, Y., Yin, L. and Zheng, W. (2021), "An improved method for soft tissue modeling", Biomed. Signal Pr. Control, 65, 102367. https://doi.org/10.1016/j.bspc.2020.102367.
  88. Thakur, P., Chahar, D. and Thakur, A. (2022), "Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites", Adv. Nano Res., 12(4), 415-426. http://doi.org/10.12989/ANR.2022.12.4.415.
  89. Vega-Martinez, G., Ramos-Becerril, F.J., Mirabent-Amor, D., Franco-Sanchez, J.G., Vera-Hernandez, A., Alvarado-Serrano, C. and Leija-Salas, L. (2018). "Analysis of heart rate variability and its application in sports medicine: A review", 2018 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), 19-24 March 2018. https://doi.org/10.1109/GMEPE-PAHCE.2018.8400756.
  90. Walsh, S.T. (2004), "Roadmapping a disruptive technology: A case study: The emerging microsystems and top-down nanosystems industry", Technol. Forecast. Soc. Change, 71(1), 161-185. https://doi.org/10.1016/j.techfore.2003.10.003.
  91. Wang, J., Jiang, X., Zhao, L., Zuo, S., Chen, X., Zhang, L., Lin, Z., Zhao, X., Qin, Y., Zhou, X. and Yu, X.Y. (2020), "Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators", Acta Pharm. Sinica B, 10(2), 313-326. https://doi.org/10.1016/j.apsb.2019.09.003.
  92. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  93. Xiao, X., Mu, B., Cao, G., Yang, Y. and Wang, M. (2022), "Flexible battery-free wireless electronic system for food monitoring", J. Sci. Adv. Mater. Devices, 7(2), 100430. https://doi.org/10.1016/j.jsamd.2022.100430.
  94. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  95. Xu, Y., Zhang, Y., Yang, H., Yin, W., Zeng, L., Fang, S., Liu, S.-Y., Dai, Z., Zou, X. and Pan, Y. (2022), "Two-dimensional coordination polymer-based nanosensor for sensitive and reliable nucleic acids detection in living cells", Chin. Chem. Lett., 33(2), 968-972. https://doi.org/10.1016/j.cclet.2021.07.041.
  96. Yang, H., Huang, H., Liu, X., Li, Z., Li, J., Zhang, D., Chen, Y. and Liu, J. (2023), "Sensing mechanism of an Au-TiO2-Ag nanograting based on Fano resonance effects", Appl. Opt., 62(17), 4431-4438. https://doi.org/10.1364/AO.491732.
  97. Yuvaraj, T., Bindushri, Chandana, G.S., Shetty, D. and Sanil, H. (2021), "Development of prototype heart pulse rate monitoring system", Int. J. Res. Eng. Sci. Manag., 4(7), 172-174.
  98. Zarga, D., Tounsi, A., Bousahla Abdelmoumen, A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. http://doi.org/10.12989/SCS.2019.32.3.389.
  99. Zhang, G., Liu, M., Guo, N. and Zhang, W. (2016), "Design of the MEMS piezoresistive electronic heart sound sensor", Sensors, 16(11). https://doi.org/10.3390/s16111728.
  100. Zhang, H., Zhao, X., Wang, H., Niu, B. and Xu, N. (2023), "Adaptive tracking control for output-constrained switched MIMO pure-feedback nonlinear systems with input saturation", J. Syst. Sci. Complex., 36(3), 960-984. https://doi.org/10.1007/s11424-023-1455-y.
  101. Zhang, L., Deng, S., Zhang, Y., Peng, Q., Li, H., Wang, P., Fu, X., Lei, X., Qin, A. and Yu, X. (2020), "Homotypic targeting delivery of siRNA with artificial cancer cells", Adv. Healthcare Mater., 9(9), 1900772. https://doi.org/10.1002/adhm.201900772.
  102. Zhao, F., Song, L., Peng, Z., Yang, J., Luan, G., Chu, C., Ding, J., Feng, S., Jing, Y. and Xie, Z. (2021), "Night-time light remote sensing mapping: Construction and analysis of ethnic minority development index", Remote Sens., 13(11), 2129. https://doi.org/10.3390/rs13112129.
  103. Zhao, K., Chen, Y., Yu, F., Jian, W., Zheng, M. and Zeng, H. (2022), "A biodegradable magnesium alloy sample induced rat osteochondral defect repair through Wnt/β,-catenin signaling pathway", Adv. Nano Res., 12(3), 301-317. http://doi.org/10.12989/ANR.2022.12.3.301.
  104. Zheng, W., Liu, X. and Yin, L. (2021), "Research on image classification method based on improved multi-scale relational network", PeerJ Comput. Sci., 7, e613. https://doi.org/10.7717/peerj-cs.613.