DOI QR코드

DOI QR Code

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu (Institute of Automobile Engineering, Chongqing Industry Polytechnic College)
  • Received : 2022.06.22
  • Accepted : 2023.03.13
  • Published : 2023.08.25

Abstract

The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

Keywords

Acknowledgement

This work was supported by Natural Science Foundation of Chongqing Province (General Program): cstc2020jcyj-msxmX0050 (Preparation technology and performance optimization of nanocrystalline high-entropy alloy based on molecular dynamics).

References

  1. Ansari, R., Torabi, J. and Shojaei, M.F. (2016), "Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method", Eur. J. Mech. A Solids, 60, 166-182. https://doi.org/10.1016/j.euromechsol.2016.07.003.
  2. Ansari, R., Hasrati, E. and Torabi, J. (2020), "Effect of external pressure on the vibration analysis of higher order shear deformable FG-CNTRC spherical panels", Eng. Comput., 38, 43-54. https://doi.org/10.1007/s00366-020-01138-0.
  3. Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Meth. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254.
  4. Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., 5(2), 69. https://doi.org/10.12989/anr.2017.5.2.069.
  5. Fantuzzi, N., Tornabene, F., and Viola, E. (2014), "Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes", Int. J. Mech. Sci., 79, 216-251. https://doi.org/10.1016/j.ijmecsci.2013.12.008.
  6. Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
  7. Gholami, R. and Ansari, R. (2018), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019.
  8. Haboussi, M., Sankar, A. and Ganapathi, M. (2021), "Nonlinear axisymmetric dynamic buckling of functionally graded graphene reinforced porous nanocomposite spherical caps", Mech. Adv. Mater. Struct., 28(2), 127-140. https://doi.org/10.1080/15376494.2018.1549296.
  9. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299. https://doi.org/10.12989/anr.2018.6.4.299.
  10. Heydarpour, Y., Malekzadeh, P., Dimitri, R. and Tornabene, F. (2020), "Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme" Compos. Struct., 235, 111707. https://doi.org/10.1016/j.compstruct.2019.111707.
  11. Khadir, A.I., Daikh, A.A. and Eltaher, M.A. (2021), "Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621.
  12. Kiani, Y. (2017), "Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions", Compos. Struct., 159, 368-381. https://doi.org/10.1016/j.compstruct.2016.09.079.
  13. Kiani, Y. (2019), "Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment", Compos. Part B Eng., 156, 128-137. https://doi.org/10.1016/j.compositesb.2018.08.052.
  14. Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M. and Asemi, K. (2021), "Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 361-380. https://doi.org/10.12989/anr.2021.11.4.361.
  15. Krack, M. and Gross, J. (2019), Harmonic Balance for Nonlinear Vibration Problems, Springer, New York.
  16. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1). https://doi.org/10.12989/anr.2021.11.1.001.
  17. Liu, D., Kitipornchai, S., Chen, W. and Yang, J. (2018), "Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell", Compos. Struct., 189, 560-569. https://doi.org/10.1016/j.compstruct.2018.01.106.
  18. Liu, D., Zhou, Y. and Zhu, J. (2021), "On the free vibration and bending analysis of functionally graded nanocomposite spherical shells reinforced with graphene nanoplatelets: Three-dimensional elasticity solutions", Eng. Struct., 226, 111376. https://doi.org/10.1016/j.engstruct.2020.111376.
  19. Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and buckling of functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. https://doi.org/10.12989/anr.2021.10.6.539.
  20. Noroozi, A.R., Malekzadeh, P., Dimitri, R. and Tornabene, F. (2020), "Meshfree radial point interpolation method for the vibration and buckling analysis of FG-GPLRC perforated plates under an in-plane loading", Eng. Struct., 221, 111000. https://doi.org/10.1016/j.engstruct.2020.111000.
  21. Qin, Z., Zhao, S., Pang, X., Safaei, B. and Chu, F. (2020), "A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions", Int. J. Mech. Sci., 170, 105341. https://doi.org/10.1016/j.ijmecsci.2019.105341
  22. Qu, Y., Long, X., Yuan, G. and Meng, G. (2013), "A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions", Compos. Part B Eng., 50, 381-402. https://doi.org/10.1016/j.compositesb.2013.02.028.
  23. Salami, S.J., Boroujerdy, M.S. and Bazzaz, E. (2021), "Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs", Adv. Nano Res., 10(4), 385-395. https://doi.org/10.12989/anr.2021.10.4.385.
  24. Selim, B.A. and Liu, Z. (2021), "Impact analysis of functionally-graded graphene nanoplatelets-reinforced composite plates laying on Winkler-Pasternak elastic foundations applying a meshless approach", Eng. Struct., 241, 112453. https://doi.org/10.1016/j.engstruct.2021.112453.
  25. Shen, H.S., Xiang, Y. and Lin, F. (2017a), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments", Comput. Meth. Appl. Mech. Eng., 319, 175-193. https://doi.org/10.1016/j.cma.2017.02.029.
  26. Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017b), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
  27. Shen, H.S., Xiang, Y. and Fan, Y. (2017c), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments", Compos. Struct., 182, 447-456. https://doi.org/10.1016/j.compstruct.2017.09.010.
  28. Sobhani, E. (2022), "Vibrational performance modeling for coupling of a full-ellipsoid shell with a cylindrical shell with a focus on flexibility at coupling and boundary conditions via the GDQ-meshless method", Eng. Anal. Bound. Elem., 144, 329-351. https://doi.org/10.1016/j.enganabound.2022.08.037.
  29. Sobhani, E. and Avcar, M. (2022a), "The influence of various nanofiller materials (CNTs, GNPs, and GOPs) on the natural frequencies of Nanocomposite Cylindrical Shells: A comparative study", Mater. Today Commun., 33, 104547. https://doi.org/10.1016/j.mtcomm.2022.104547.
  30. Sobhani, E. and Avcar, M. (2022b), "Natural frequency analysis of imperfect GNPRN conical shell, cylindrical shell, and annular plate structures resting on Winkler-Pasternak Foundations under arbitrary boundary conditions", Eng. Anal. Bound. Elem., 144, 145-164. https://doi.org/10.1016/j.enganabound.2022.08.018.
  31. Sobhani, E. and Masoodi, A.R. (2022), "On the frequencies of graphene nanoplatelet agglomerated nanocomposite paired paraboloidal-cylindrical shells under arbitrary boundary conditions", Aerosp. Sci. Technol., 128, 107782. https://doi.org/10.1016/j.ast.2022.107782.
  32. Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022a), "Free-damped vibration analysis of graphene nano-platelet nanocomposite joined conical-conical-cylindrical shell marinelike structures", Ocean Eng., 261, 112163. https://doi.org/10.1016/j.oceaneng.2022.112163.
  33. Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022b), "Circumferential vibration analysis of nano-porous-sandwich assembled spherical-cylindrical-conical shells under elastic boundary conditions", Eng. Struct., 273, 115094. https://doi.org/10.1016/j.engstruct.2022.115094.
  34. Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022c), "Wave frequency responses estimate of the nanocomposite linked hemispherical-conical shell underwater-like bodies with the impacts of two types of graphene-based nanofillers", Ocean Eng., 262, 112329. https://doi.org/10.1016/j.oceaneng.2022.112329.
  35. Sobhani, E. (2023a), "Vibrational characteristics of fastening of a spherical shell with a coupled conical-conical shells strengthened with nanocomposite sandwiches contained agglomerated CNT face layers and GNP core under spring boundary conditions", Eng. Anal. Bound. Elem., 146, 362-387. https://doi.org/10.1016/j.enganabound.2022.10.035.
  36. Sobhani, E. (2023b), "Improvement of vibrational characteristics of multipurpose structures (plate and shells) used in aerospace components by deploying Graphene Oxide Powders (GOPs) in a matrix as a nano-reinforcement: A comprehensive study", Eng. Anal. Bound. Elem., 146, 598-635. https://doi.org/10.1016/j.enganabound.2022.11.014.
  37. Sobhani, E., Masoodi, A.R., Dimitri, R. and Tornabene, F. (2023), "Free vibration of porous graphene oxide powder nanocomposites assembled paraboloidal-cylindrical shells", Compos. Struct., 304, 116431. https://doi.org/10.1016/j.compstruct.2022.116431.
  38. Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B Eng., 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043.
  39. Tao, C. and Dai, T. (2021), "Postbuckling of multilayer cylindrical and spherical shell panels reinforced with graphene platelet by isogeometric analysis", Eng. Comput. 1-16. https://doi.org/10.1007/s00366-021-01360-4.
  40. Tornabene, F. and Viola, E. (2007), "Vibration analysis of spherical structural elements using the GDQ method", Comput. Math. Appl., 53(10), 1538-1560. https://doi.org/10.1016/j.camwa.2006.03.039.
  41. Tornabene, F., Liverani, A. and Caligiana, G. (2012), "General anisotropic doubly-curved shell theory: A differential quadrature solution for free vibrations of shells and panels of revolution with a free-form meridian", J. Sound Vib., 331 (22), 4848-4869. https://doi.org/10.1016/j.jsv.2012.05.036.
  42. Van Do, V.N. and Lee, C.H. (2020), "Static bending and free vibration analysis of multilayered composite cylindrical and spherical panels reinforced with graphene platelets by using isogeometric analysis method", Eng. Struct., 215, 110682. https://doi.org/10.1016/j.engstruct.2020.110682.
  43. Wang, Q., Pang, F., Qin, B. and Liang, Q. (2018), "A unified formulation for free vibration of functionally graded carbon nanotube reinforced composite spherical panels and shells of revolution with general elastic restraints by means of the Rayleigh-Ritz method", Polym. Compos., 39(S2), E924-E944. https://doi.org/10.1002/pc.24339.
  44. Wang, A., Pang, Y., Zhang, W. and Jiang, P. (2019), "Nonlinear dynamic analysis of functionally graded graphene reinforced composite truncated conical shells", Int. J. Bifurc. Chaos, 29(11), 1950148. https://doi.org/10.1142/S0218127419501487.
  45. Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
  46. Zhao, S., Zhao, Z., Yang, Z., Ke, L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339.