DOI QR코드

DOI QR Code

Targeting of integrin αvβ3 with different sequence of RGD peptides: A molecular dynamics simulation study

  • Azadeh Kordzadeh (Chemical and Petroleum Engineering Department, Sharif University of Technology) ;
  • Hassan Bardania (Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences) ;
  • Esmaeil Behmard (Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences) ;
  • Amin Hadi (Cellular and Molecular Research Center, Yasuj University of Medical Sciences)
  • Received : 2021.05.25
  • Accepted : 2023.04.24
  • Published : 2023.08.25

Abstract

Integrin αvβ3 is one of the receptors expressed in cancer cells. RGD peptides have the potential to target integrin αvβ3 (receptor), which can increase drug delivery efficiency. In this study, 55 different RGD dimer motifs were investigated. At first, the binding energy between RGD peptides and the receptor was calculated using molecular docking. Then, three RGD peptides with the strongest binding energy with the receptor were selected, and their dynamic adsorption on the receptor was simulated by molecular dynamics (MD). The obtained results showed that a sequence that has RGD at the beginning and end with tryptophan (TRP) has strong Lennard-Jones (LJ) and electrostatic interactions with Integrin αvβ3 and has changed the conformation of receptor significantly, which analyzed by root mean square deviation (RMSD) and radius of gyration.

Keywords

References

  1. Akrami, M., Samimi, S., Alipour, M., Bardania, H., Ramezanpour, S., Najafi, N., Hosseinkhani, S., Kamankesh, M., Haririan, I. and Hassanshahi, F. (2021), "Potential anticancer activity of a new pro-apoptotic peptide-thioctic acid gold nanoparticle platform", Nanotechnology, 32(14), 145101. https://doi.org/10.1088/1361-6528/abd3cb
  2. Aksorn, N. and Chanvorachote, P. (2019), "Integrin as a molecular target for anti-cancer approaches in lung cancer", Anticancer Res., 39(2), 541-548. https://doi.org/10.21873/anticanres.13146.
  3. Albelda, S.M., Mette, S.A., Elder, D.E., Stewart, R., Damjanovich, L., Herlyn, M. and Buck, C.A. (1990), "Integrin distribution in malignant melanoma: Association of the β3 subunit with tumor progression", Cancer Res., 50(20), 6757-6764.
  4. Bardania, H., Shojaosadati, S.A., Kobarfard, F., Morshedi, D., Aliakbari, F., Tahoori, M.T. and Roshani, E. (2019), "RGD-modified nano-liposomes encapsulated eptifibatide with proper hemocompatibility and cytotoxicity effect", Iranian J. Biotechnol., 17(2), e2008. https://doi.org/10.21859/ijb.2008
  5. Berendsen, H.J., Postma, J.V., van Gunsteren, W.F., DiNola, A. and Haak, J.R. (1984), "Molecular dynamics with coupling to an external bath", J. Chem. Phys., 81(8), 3684-3690. https://doi.org/10.1063/1.448118
  6. Chan, B., Matsuura, N., Takada, Y., Zetter, B.R. and Hemler, M.E. (1991), "In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells", Science, 251(5001), 1600-1602. https://doi.org/10.1126/science.2011740
  7. Cheah, M. and Andrews, M.R. (2018), "Integrin activation: implications for axon regeneration", Cells, 7(3), 20. https://doi.org/10.1126/science.2011740.
  8. Comeau, S.R., Gatchell, D.W., Vajda, S. and Camacho, C.J. (2004), "ClusPro: A32en automated docking and discrimination method for the prediction of protein complexes", Bioinform., 20(1), 45-50. https://doi.org/10.1093/bioinformatics/btg371
  9. Didier, B., Catherine, S., Alexei, G., Pascal, D. and Jean-Luc, C. "Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide",
  10. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. and Pedersen, L.G. (1995), "A smooth particle mesh Ewald method", J. Chem. Phys., 103(19), 8577-8593. https://doi.org/10.1063/1.470117
  11. Fanelli, R., Schembri, L., Piarulli, U., Pinoli, M., Rasini, E., Paolillo, M., Galiazzo, M.C., Cosentino, M. and Marino, F. (2014), "Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells", Vascular Cell, 6(1), 1-9. https://doi.org/10.1186/2045-824X-6-11
  12. Fu, S., Xu, X., Ma, Y., Zhang, S. and Zhang, S. (2019), "RGD peptide-based non-viral gene delivery vectors targeting integrin αvβ3 for cancer therapy", 27(1), 1-11. https://doi.org/10.1080/1061186X.2018.1455841
  13. Gehlsen, K.R., Davis, G.E. and Sriramarao, P. (1992), "Integrin expression in human melanoma cells with differing invasive and metastatic properties", Clin. Exp. Metastas., 10(2), 111-120. https://doi.org/10.1007/BF00114587
  14. Giancotti, F.G. and Ruoslahti, E. (1999), "Integrin signaling", Science, 285(5430), 1028-1033. https://doi.org/10.1126/science.285.5430.1028
  15. Goligorsky, M.S., Kessler, H. and Romanov, V.I. (1998), "Molecular mimicry of integrin ligation: therapeutic potential of arginine-glycine-aspartic acid (RGD) peptides", Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association-European Renal Association, 13(2), 254-263. https://doi.org/10.1093/oxfordjournals.ndt.a027815
  16. Gurrath, M., Muller, G., Kessler, H., Aumailley, M. and Timpl, R. (1992), "Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides", Eur. J. Biochem., 210(3), 911-921. https://doi.org/10.1111/j.1432-1033.1992.tb17495.x
  17. Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: visual molecular dynamics", J. Mol. Graph., 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  18. Jwad, R., Weissberger, D. and Hunter, L. (2020), "Strategies for fine-tuning the conformations of cyclic peptides", Chem. Rev., 120(17), 9743-9789. https://doi.org/10.1021/acs.chemrev.0c00013
  19. Kok, R.J., Schraa, A.J., Bos, E.J., Moorlag, H.E., A sgeirsdottir, S.A., Everts, M., Meijer, D.K. and Molema, G. (2002), "Preparation and functional evaluation of RGD-modified proteins as αvβ3 integrin directed therapeutics", Bioconjugate Chem., 13(1), 128-135. https://doi.org/10.1021/bc015561+
  20. Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D. and Vajda, S. (2017), "The ClusPro web server for protein-protein docking", Nature Protoc., 12(2), 255-278. https://doi.org/10.1038/nprot.2016.169
  21. Krishn, S.R., Singh, A., Bowler, N., Duffy, A.N., Friedman, A., Fedele, C., Kurtoglu, S., Tripathi, S.K., Wang, K. and Hawkins, A. (2019), "Prostate cancer sheds the αvβ3 integrin in vivo through exosomes", Matrix Biol., 77, 41-57. https://doi.org/10.1016/j.matbio.2018.08.004
  22. Kwakwa, K.A. and Sterling, J.A. (2017), "Integrin αvβ3 signaling in tumor-induced bone disease", Cancers, 9(7), 84. https://doi.org/10.3390/cancers9070084
  23. Leng, Q. and Mixson, A.J. (2005), "Modified branched peptides with a histidine-rich tail enhance in vitro gene transfection", 33(4), e40-e40. https://doi.org/10.1093/nar/gni040
  24. Leng, Q., Scaria, P., Zhu, J., Ambulos, N., Campbell, P. and Mixson, A.J. (2005), "Highly branched HK peptides are effective carriers of siRNA", 7(7), 977-986. https://doi.org/10.1002/jgm.748
  25. Lorenzen, S. and Zhang, Y. (2007), "Identification of near-native structures by clustering protein docking conformations", Proteins Struct. Funct. Bioinform., 68(1), 187-194. https://doi.org/10.1002/prot.21442
  26. Mahmoudi, R., Ashraf Mirahmadi-Babaheidri, S., Delaviz, H., Fouani, M.H., Alipour, M., Jafari Barmak, M., Christiansen, G. and Bardania, H. (2021), "RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells", J. Biomater. Appl., 35(7), 743-753. https://doi.org/10.1177/0885328220949367
  27. Marchini, M., Mingozzi, M., Colombo, R., Guzzetti, I., Belvisi, L., Vasile, F., Potenza, D., Piarulli, U., Arosio, D. and Gennari, C. (2012), "Cyclic RGD peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands", Chem. A Eur. J., 18(20), 6195-6207. https://doi.org/10.1002/chem.201200457
  28. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P. and De Vries, A.H. (2007), "The MARTINI force field: Coarse grained model for biomolecular simulations", J. Phys. Chem. B, 111(27), 7812-7824. https://doi.org/10.1021/jp071097f
  29. Mezu-Ndubuisi, O.J. and Maheshwari, A. (2020), "The role of integrins in inflammation and angiogenesis", Pediatric Res., 1-8. https://doi.org/10.1038/s41390-020-01177-9
  30. Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P. and Marrink, S.J. (2008), "The MARTINI coarse-grained force field: Extension to proteins", J. Chem. Theor. Comput., 4(5), 819-834. https://doi.org/10.1021/ct700324xr
  31. Nagae, M., Re, S., Mihara, E., Nogi, T., Sugita, Y. and Takagi, J. (2012), "Crystal structure of α5β1 integrin ectodomain: Atomic details of the fibronectin receptor", J. Cell Biol., 197(1), 131-140. https://doi.org/10.1083/jcb.201111077
  32. Nieberler, M., Reuning, U., Reichart, F., Notni, J., Wester, H.J., Schwaiger, M., Weinmuller, M., Rader, A., Steiger, K. and Kessler, H. (2017), "Exploring the role of RGD-recognizing integrins in cancer", Cancers, 9(9), 116. https://doi.org/10.3390/cancers9090116
  33. Panzeri, S., Zanella, S., Arosio, D., Vahdati, L., Dal Corso, A., Pignataro, L., Paolillo, M., Schinelli, S., Belvisi, L. and Gennari, C. (2015), "Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists", Chem. A Eur. J., 21(16), 6265-6271. https://doi.org/10.1002/chem.201406567
  34. Plantefaber, L.C. and Hynes, R.O. (1989), "Changes in integrin receptors on oncogenically transformed cells", Cell, 56(2), 281-290. https://doi.org/10.1016/0092-8674(89)90902-1
  35. Porter, K.A., Xia, B., Beglov, D., Bohnuud, T., Alam, N., Schueler-Furman, O. and Kozakov, D.J.B. (2017), "ClusPro PeptiDock: Efficient global docking of peptide recognition motifs using FFT", 33(20), 3299-3301. https://doi.org/10.1093/bioinformatics/btx216
  36. Rose, P.W., Beran, B., Bi, C., Bluhm, W.F., Dimitropoulos, D., Goodsell, D.S., Prlic, A., Quesada, M., Quinn, G.B. and Westbrook, J.D. (2010), "The RCSB Protein Data Bank: redesigned web site and web services", Nucleic Acids Res., 39(suppl 1), D392-D401. https://doi.org/10.1093/nar/gkq1021
  37. Sacco, G., Dal Corso, A., Arosio, D., Belvisi, L., Paolillo, M., Pignataro, L. and Gennari, C. (2019), "A dimeric bicyclic RGD ligand displays enhanced integrin binding affinity and strong biological effects on U-373 MG glioblastoma cells", Organ. Biomol. Chem., 17(39), 8913-8917. https://doi.org/10.1039/C9OB01811E
  38. Saudek, V., Atkinson, R.A. and Pelton, J.T. (1991), "Three-dimensional structure of echistatin, the smallest active RGD protein", Biochem., 30(30), 7369-7372. https://doi.org/10.1021/bi00244a003
  39. Shimaoka, M., Kawamoto, E., Gaowa, A., Okamoto, T. and Park, E.J. (2019), "Connexins and integrins in exosomes", Cancers, 11(1), 106. https://doi.org/10.3390/cancers11010106
  40. Tang, L., Xu, M., Zhang, L., Qu, L. and Liu, X. (2020), "Role of αVβ3 in prostate cancer: Metastasis initiator and important therapeutic target", OncoTargets Therapy. 13 7411.
  41. Toum, V., Bolley, J., Lalatonne, Y., Barbey, C., Motte, L., Lecouvey, M., Royer, J., Dupont, N. and Perard-Viret, J. (2015), "In silico studies, synthesis and binding evaluation of substituted 2-pyrrolidinones as peptidomimetics of RGD tripeptide sequence", Eur. J. Med. Chem., 93, 360-372. https://doi.org/10.1016/j.ejmech.2015.02.017
  42. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E. and Berendsen, H.J. (2005), "GROMACS: Fast, flexible, and free", J. Comput. Chem., 26(16), 1701-1718. https://doi.org/10.1002/jcc.20291. PMID: 16211538.
  43. Wakefield, A.E., Wuest, W.M. and Voelz, V.A. (2015), "Molecular simulation of conformational pre-organization in cyclic RGD peptides", J. Chem. Inform. Model., 55(4), 806-813. https://doi.org/10.1021/ci500768u
  44. Wu, Z., Cheng, X., Hong, H., Zhao, X. and Zhou, Z. (2017), "New potent and selective αvβ3 integrin ligands: Macrocyclic peptides containing RGD motif synthesized by sortase A-mediated ligation", Bioorgan. Med. Chem. Lett., 27(9), 1911-1913. https://doi.org/10.1016/j.bmcl.2017.03.035
  45. Xiao, T., Takagi, J., Coller, B.S., Wang, J.H. and Springer, T.A. (2004), "Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics", Nature, 432(7013), 59-67. https://doi.org/10.1038/nature02976
  46. Xiong, J.-P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L. and Arnaout, M.A. (2002), "Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand", Science, 296(5565), 151-155. https://doi.org/10.1126/science.1069040
  47. Xiong, J.-P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L. and Arnaout, M.A.J.S. (2002), "Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand", 296(5565), 151-155. https://doi.org/10.1126/science.1069040
  48. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. and Zhang, Y. (2015), "The I-TASSER Suite: protein structure and function prediction", Nature Methods, 12(1), 7-8. https://doi.org/10.1038/nmeth.3213
  49. Yu, Y.P., Wang, Q., Liu, Y.C. and Xie, Y. (2014), "Molecular basis for the targeted binding of RGD-containing peptide to integrin αVβ3", Biomater., 35(5), 1667-1675. https://doi.org/10.1016/j.biomaterials.2013.10.072
  50. Yu, Y.P., Wang, Q., Liu, Y.C. and Xie, Y.J.B. (2014), "Molecular basis for the targeted binding of RGD-containing peptide to integrin αVβ3", 35(5), 1667-1675. https://doi.org/10.1016/j.biomaterials.2013.10.072
  51. Zitzmann, S., Ehemann, V. and Schwab, M. (2002), "Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo", Cancer Res., 62(18), 5139-5143.