Acknowledgement
본 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임. (No. NRF-2019R1A2C1002385)
References
- Thai, H.T., "Machine learning for structural engineering: A state-of-the-art review", Structures, Vol.38, pp.448-491, 2022, doi: 10.1016/j.istruc.2022.02.003
- Degtyarev, V.V. & Naser, M.Z., "Boosting machines for predicting shear strength of CFS channels with staggered web perforations", Structures, Vol.34, pp.3391-3403, 2021, doi: 10.1016/j.istruc.2021.09.060
- Feng, D.C., Wang, W.J., Mangalathu, S., Hu, G. & Wu, T., "Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements", Engineering Structures, Vol.235, 2021, doi: 10.1016/j.engstruct.2021.111979
- Lee, C. & Ahn, J., "Flexural design of reinforced concrete frames by genetic algorithm", Journal of Structural Engineering, Vol.129, pp.762-774, 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:6(762)
- Lee, K.S. & Geem, Z.W., "A new structural optimization method based on the harmony search algorithm", Computers and Structures, Vol.82, pp.781-798, 2004, doi: 10.1016/j.compstruc.2004.01.002
- Jeong, J.H. & Jo, H., "Deep reinforcement learning for automated design of reinforced concrete structures", Computer-Aided Civil and Infrastructure Engineering, Vol.36, pp.1508-1529, 2021, doi: 10.1111/mice.12773
- Volodymyr, M., Koray, K., David, S., Andrei, A.R., Joel, V., Marc, G.B., Alex, G., Martin, R., Andreas, K.F., Georg, O., Stig, P., Charles, B., Amir, S., Ioannis, A., Helen, K., Dharshan, K., Daan, W., Shane, L. & Demis, H., "Human-level control through deep reinforcement learning", Nature, Vol. 518, pp. 529-533, 2015, doi: 10.1038/nature14236
- Hafiz, A.M. & Bhat, G.M., "Deep q-network based multi-agent reinforcement learning with binary action agents", Computer Science, 2020, doi: 10.48550/arXiv.2008.04109
- Leps, M., & Sejnoha, M., "New approach to optimization of reinforced concrete beams", Computers and Structures, Vol.81, pp.1957-1966, 2003, doi: 10.1016/S0045-7949(03)00215-3
- Zhang, K., Yang, Z. & Basar, T., "Multi-agent reinforcement learning: a selective overview of theories and algorithms", Studies in Systems, Decision and Control, Vol. 325, pp. 321-384, 2021, doi: 10.1007/978-3-030-60990-0_12
- Hasselt, H.V., Guez, A. & Silver, D., "Deep reinforcement learning with double q-learning", Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp.2094-2100, 2016, doi: 10.1609/aaai.v30i1.10295