References
- Abad, G., Lopez, J., Rodriguez, M.A., Marroyo, L. and Iwanski, G. (2011), "Dynamic modeling of the doubly fed induction machine", Doubly Fed Induct. Machine, 209-239. https://doi.org/10.1002/9781118104965.CH4
- Ansari, A.A., Aftab, A.A. and Dyanamina, G. (2021), "MATLAB Simulation of FRT Techniques for DFIG-based Wind Farms", Proceedings of the 2021 International Conference on Control, Automation, Power and Signal Processing (CAPS).
- Ansari, A.A. and Dyanamina, G. (2022a), "Comparative analysis of controlling methods for doubly fed induction generator based wind energy system", Lecture Notes Electr. Eng., 852, 493-507. https://doi.org/10.1007/978-981-16-9239-0_37/COVER
- Ansari, A.A. and Dyanamina, G. (2022b), "Fault ride-through operation analysis of doubly fed induction generator-based wind energy conversion systems: A comparative review", Energies, 15(21), 8026. https://doi.org/10.3390/EN15218026
- Ansari, A. A., Dyanamina, G. and Ansari, A.A. (2023), "Decoupled control of rotor side power electronic converter for grid connected DFIG based wind energy system", Proceedings of the 2023 IEEE International Students' Conference on Electrical, Electronics and Computer Science, SCEECS 2023. https://doi.org/10.1109/SCEECS57921.2023.10063093
- Babaei, M., Atasoy, A., Hajirasouliha, I., Mollaei, S., Jalilkhani, M., Babaei, M., Atasoy, A., Hajirasouliha, I., Mollaei, S. and Jalilkhani, M. (2022), "Numerical solution of beam equation using neural networks and evolutionary optimization tools", Adv. Comput. Des., 7(1), 1. https://doi.org/10.12989/ACD.2022.7.1.001
- Benbouhenni, H. and Bizon, N. (2021), "Improved rotor flux and torque control based on the third-order sliding mode scheme applied to the asynchronous generator for the single-rotor wind turbine", Mathematics, 9(18), 2297. https://doi.org/10.3390/MATH9182297
- Conchas, R.F., Sanchez, E.N., Ricalde, L.J., Alvarez, J.G. and Alanis, A.Y. (2023), "Sensor fault-tolerant control for a doubly fed induction generator in a smart grid", Eng. Appl. Artif. Intell., 117, 105527. https://doi.org/10.1016/J.ENGAPPAI.2022.105527
- Global wind report (2022), Global wind report 2022; Global Wind Energy Council, GWEC Europe Office - Rue de Commerce 31 1000 Brussels, Belgium. https://gwec.net/global-wind-report-2022/#data
- Gupta, R. and Dyanamina, G. (2019), "Matlab simulation of DTC-SVM of doubly fed induction generator for wind energy system", Proceedings of the 2019 Innovations in Power and Advanced Computing Technologies, i-PACT 2019. https://doi.org/10.1109/I-PACT44901.2019.8959990
- Jaladi, K.K. and Sandhu, K.S. (2018), "DC-link transient improvement of SMC-based hybrid control of DFIG-WES under asymmetrical grid faults", Int. Transact. Electr. Energy Syst., 28(12), e2633. https://doi.org/10.1002/ETEP.2633
- Mohammadi, J., Vaez-Zadeh, S., Ebrahimzadeh, E. and Blaabjerg, F. (2018), "Combined control method for grid-side converter of doubly fed induction generatorbased wind energy conversion systems", IET Renew. Power Gener., 12(8), 943-952. https://doi.org/10.1049/IET-RPG.2017.0539/CITE/REFWORKS
- Mossa, M.A., Saad Al-Sumaiti, A., Duc Do, T. and Zaki Diab, A.A. (2019), "Cost-effective predictive flux control for a sensorless doubly fed induction generator", IEEE Access, 7, 172606-172627. https://doi.org/10.1109/ACCESS.2019.2951361
- Muyeen, S.M., Takahashi, R., Murata, T. and Tamura, J. (2009), "A variable speed wind turbine control strategy to meet wind farm grid code requirements", IEEE T. Power Syst., 25(1), 331-340. https://doi.org/10.1109/TPWRS.2009.2030421
- Nguyen, A.T. and Lee, D.C. (2022), "Sensorless control of variable-speed SCIG wind energy conversion systems based on rotor flux estimation using ROGI-FLL", IEEE J. Emerg. Select. Topics Power Electron., 10(6), 7786-7796. https://doi.org/10.1109/JESTPE.2022.3207904
- Patel, R.K. and Dyanamina, G. (2017), "Direct torque control of doubly fed induction generator for wind energy conversion system", Proceedings of the 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017. https://doi.org/10.1109/ICCCNT.2017.8204050
- Pena, R., Clare, J.C. and Asher, G.M. (1996), "Doubly fed induction generator using back-to-back PWM converters and its application to variablespeed wind-energy generation", IEEE Proceedings: Electric Power Applications, 143(3), 231-241. https://doi.org/10.1049/IP-EPA:19960288
- Sahri, Y., Tamalouzt, S., Hamoudi, F., Belaid, S.L., Bajaj, M., Alharthi, M.M., Alzaidi, M.S. and Ghoneim, S.S.M. (2021), "New intelligent direct power control of DFIG-based wind conversion system by using machine learning under variations of all operating and compensation modes", Energy Reports, 7, 6394-6412. https://doi.org/10.1016/J.EGYR.2021.09.075
- Sguarezi Filho, A.J. (2022), Model Predictive Control for Doubly-Fed Induction Generators and Three-Phase Power Converters, Elsevier. https://doi.org/10.1016/B978-0-32-390964-8.00002-6
- Takahashi, I. and Noguchi, T. (1986), "A new quick-response and high-efficiency control strategy of an induction motor", IEEE T. Ind. Appl., 22(5), 820-827. https://doi.org/10.1109/TIA.1986.4504799
- Yaramasu, V., Wu, B., Sen, P.C., Kouro, S. and Narimani, M. (2015), "High-power wind energy conversion systems: State-of-the-art and emerging technologies", Proceedings of the IEEE, 103(5), 740-788. https://doi.org/10.1109/JPROC.2014.2378692
- Zheng, Z., Xie, Q., Huang, C., Xiao, X. and Li, C. (2021), "Superconducting technology based fault ride through strategy for PMSG-based wind turbine generator: A comprehensive review", IEEE T. Appl. Superconduct., 31(8). https://doi.org/10.1109/TASC.2021.3101767