DOI QR코드

DOI QR Code

Design and analysis of offshore wind structure

  • Young-Suk You (JBNU International Offshore Wind International Research Institute, Department of EnergyMechanical Design Engineering, Jeonbuk National University) ;
  • Min-Young Sun (JBNU International Offshore Wind International Research Institute, Department of EnergyMechanical Design Engineering, Jeonbuk National University) ;
  • Young-Ho Lee (Department of Mechanical Engineering, Korea Maritime and Ocean University)
  • 투고 : 2020.08.19
  • 심사 : 2022.10.20
  • 발행 : 2023.07.25

초록

The objective of this study was to evaluate the foundation structure of a 3.6-MW wind turbine generator (WTG) installed offshore in Western Korea. The ultimate limit state (ULS) and fatigue limit state (FLS) of the multi-pile steel foundation (MSF) installed at the Saemangeum offshore wind farm were structurally investigated using the finite element (FE) software, ANSYS Workbench 19.0. According to the ULS analysis, no plastic deformation was found in any of the components constituting the substructure. At the same time, the maximal stress value reached the calculation limit of 335 MPa. According to the FLS results, the stress concentration factor (SCF) ranged from 1.00 to 1.88 in all components. The results of this study can be applied to determine the optimal design for MSFs.

키워드

과제정보

This work is the outcome of the SMG offshore wind farm project. The research team collaborated with SMG Offshore Wind Power Ltd., Co., Gigas Engineering Ltd., Co., and the Offshore Power Plant Institute of Jeonbuk National University.

참고문헌

  1. Arany, L., Bhattacharya, S., Macdonald, J. and Hogan, S.J. (2016), "Design of monopiles for offshore wind turbines in 10 steps", Soil Dyn. Earthq. Eng., 92, 126-152, https://doi.org/10.1016/j.soildyn.2016.09.024.
  2. Ashish, C.B. and Selvam, P. (2013), "Static and dynamic analysis of jacket substructure for offshore fixed wind turbines", Proceedings of the Eighth Asia-Pacific Conference on Wind Engineering, IIT Madras, India, December.
  3. Bogdan, T.C. (2017), "Numerical modelling of foundations for offshore wind turbines", M.E. Dissertation; University of Aalborg, Aalborg, Denmark.
  4. Brandt, S., Broggi, M., Hafele, J., Gebhardt, C.G., Rolfes, R. and Beer, M. (2017), "Meta-models for fatigue damage estimation of offshore wind turbines jacket substructures", Procedia Engineering, 199, 1158-1163, https://doi.org/10.1016/j.proeng.2017.09.292.
  5. Chen, I.W., Wong, B.L., Lin, Y.H., Chau, S.W. and Huang, H.H. (2016), "Design and analysis of jacket substructures for offshore wind turbines", Energies, 9(4), 264-282, https://doi.org/10.3390/en9040264.
  6. Chew, K.H., Ng, E.Y.K., Tai, K., Muskulus, M. and Zwick, D. (2014), "Offshore wind turbine jacket substructure: a comparison study between four-legged and three-legged designs", J. Ocean Wind Energy, 1(2), 74-81.
  7. Devaney, L. (2012), "Breaking wave loads and stress analysis of jacket structures supporting offshore wind turbines", M.E. Dissertation; University of Manchester, Manchester, United Kingdom.
  8. DIN EN 10025 (2005), Hot Rolled Products of Structural Steels - Part 2: Technical delivery conditions for non-alloy structural steels; Deutsches Institut fur Normung, Berlin, Germany.
  9. DIN EN 1993-1-1 (2009), Eurocode 3: Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings; Deutsches Institut fur Normung, Berlin, Germany.
  10. DIN EN 1993-1-6 (2017), Eurocode 3: Design of Steel Structures - Part 1-6: Strength and Stability of Shell Structures; Deutsches Institut fur Normung, Berlin, Germany.
  11. DIN EN 1993-1-8 (2009), Eurocode 3: Design of Steel Structures - Part 1-8: Design of Joints; Deutsches Institut fur Normung, Berlin, Germany.
  12. DIN EN 1993-1-9 (2010), Eurocode 3: Design of Steel Structures - Part 1-9: Fatigue, German version EN 1993-1-9:2005 + AC:2009; Deutsches Institut fur Normung, Berlin, Germany.
  13. DNV-RP-C201 (2010), Buckling Strength of Plated Structures; Det Norske Veritas Germanischer Lloyd, Oslo, Norway.
  14. DNV-RP-C208 (2013), Determination of Structural Capacity by Non-Linear FE analysis Methods; Det Norske Veritas Germanischer Lloyd, Oslo, Norway.
  15. DNVGL-OS-C101 (2016), Design of Offshore Steel Structures: General - LRFD Method; Det Norske Veritas Germanischer Lloyd, Oslo, Norway.
  16. DNVGL-RP-C203 (2016), Fatigue Design of Offshore Steel Structures; Det Norske Veritas Germanischer Lloyd, Oslo, Norway.
  17. DNVGL-RP-C205 (2017), Environmental Conditions and Environmental Loads; Det Norske Veritas Germanischer Lloyd, Oslo, Norway.
  18. DNVGL-ST-0126 (2016), Support Structures for Wind Turbines; Det Norske Veritas Germanischer Lloyd, Oslo, Norway.
  19. Gerven, F.V. (2011), "Optimising the design of a steel substructure for offshore wind turbines in deeper waters", M.E. Dissertation; Delft University of Technology, Delft, Netherlands.
  20. Gholipour, M. and Mazloom, M. (2018), "Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings", Adv. Comput. Des., 3(1), 17-34, https://doi.org/10.12989/acd.2018.3.1.017.
  21. Hobbacher, A. (2016), International Institute of Welding (IIW): Recommendations for Fatigue Design of Welded Joints and Components, Springer, Berlin, Germany.
  22. Kelma, S. and Schaumann, P. (2015), "Probabilistic fatigue analysis of jacket support structures for offshore wind turbines exemplified on tubular joints", Energy Procedia, 80, 151-158, https://doi.org/10.15488/782.
  23. Kolonnenstr, G.B. (2015), Guideline for Wind Turbines Effect and Proof of Stability for Tower and Foundation, Texts of the German Institute for Civil Engineering Series B, 8.
  24. Maier, S. (2015), "Feasibility of offshore wind substructures in arctic environments", M.E. Dissertation; Delft University of Technology, Delft, Netherlands.
  25. Mo, R., Kang, H., Li, M. and Zhao, X. (2017), "Seismic fragility analysis of monopile offshore wind turbines under different operational conditions", Energies, 10(7), 1037-1059, https://doi.org/10.3390/en10071037.
  26. Svensson, H. (2010), "Design of foundations for wind turbines", M.E. Dissertation; University of Lund, Lund, Sweden.
  27. Ushio, Y., Saruwatari, T. and Nagano, Y. (2019), "Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast", Adv. Comput. Des., 4(1), 53-72, http://doi.org/10.12989/acd.2019.4.1.053.
  28. Yeter, B., Garbatov, Y. and Soares, C.G. (2016), "Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures", Int. J. Fatigue, 87, 71-80, https://doi.org/10.1016/j.ijfatigue.2016.01.007.
  29. Zaaijer, M.B. (2002), "Foundation models for the dynamic response of offshore wind turbines", Proceedings of the Marine Renewable Energy Conference (MAREC), Newcastle.