DOI QR코드

DOI QR Code

Influence of basalt fibres on the flexural performance of hypo sludge reinforced concrete beams with SBR latex

  • S. Srividhya (Department of Civil Engineering, Builders Engineering College) ;
  • R. Vidjeapriya (Department of Civil Engineering, College of Engineering Guindy, Anna University)
  • Received : 2022.09.28
  • Accepted : 2023.08.17
  • Published : 2023.09.25

Abstract

The focus of this study is on the structural behaviour of reinforced concrete beams in which basalt fiber and SBR latex were added and the cement was partially replaced with 10% of hypo sludge. Eight different mixes of reinforced beam specimens were tested under static loading behaviour. The experiments showed, the structural behaviour with features such as load-deflection relationships, crack pattern, crack propagation, number of crack, crack spacing and moment curvature. A stress-strain relationship to represent the overall behavior of reinforced concrete in tension, which includes the combined effects of cracking and mode of failure along the reinforcement, is proposed. The structural behaviour results of reinforced concrete beams with various types of mix were tested at the age of 28 days. The investigation revealed that the flexural behaviors of hypo sludge reinforced concrete beams with addition of basalt fiber and SBR latex was higher than that of control concrete reinforced beam. The specimen (LHSBFC) with 10% hypo sludge, 0.25% Basalt fiber and 10% SBR latex showed an increase of 5.08% load carrying capacity, 7.6% stiffness, 3.97% ductility, 31.29% energy dissipation when compared to the control concrete beam. The analytical investigation using FEM shows that it was in good agreement with the experimental investigation.

Keywords

References

  1. Ahmad, S., Malik, M.I., Wani, M.B. and Ahmad, R. (2013), "Study of concrete involving use of waste paper sludge ash as partial replacement of cement", IOSR J. Eng., 3(11), 06-15.
  2. Asprone, D., Cadoni, E., Iucolano, F. and Prota, A. (2014), "Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar", Cement Concrete Compos., 53, 52-58. https://doi.org/10.1016/j.cemconcomp.2014.06.009.
  3. Ayub, T., Shafiq, N. and Khan, S.U. (2016), "Compressive stress-strain behavior of HSFRC reinforced with basalt fibers", J. Mater. Civil Eng., 28(4), 06015014. https://doi.org/10.1061/(ASCE)MT.1943-5533.000144.
  4. Ayub, T., Shafiq, N. and Nuruddin, M.F. (2014), "Effect of chopped basalt fibers on the mechanical properties and microstructure of high performance fiber reinforced concrete", Adv. Mater. Sci. Eng., 2014, Article ID 587686. http://doi.org/10.1155/2014/587686.
  5. Branston, J., Das, S., Kenno, S.Y. and Taylor, C. (2016), "Mechanical behaviour of basalt fibre reinforced concrete", Constr. Build. Mater., 124, 878-886. https://doi.org/10.1016/j.conbuildmat.2016.08.009.
  6. Breuer, A., Janetschek, H. and Malerba, D. (2019), "Translating sustainable development goal (SDG) interdependencies into policy advice", Sustain., 11(7), 2092. https://doi.org/10.3390/su11072092.
  7. Cao, H. (2017), "Experimental investigation on the static and impact behaviors of basalt fiber-reinforced concrete", Open Civil Eng. J., 11(1). 14-21. https://doi.org/10.2174/1874149501711010014.
  8. Chen, W., Hao, H., Jong, M., Cui, J., Shi, Y., Chen, L. and Pham, T.M. (2017), "Quasi-static and dynamic tensile properties of basalt fibre reinforced polymer", Compos. Part B: Eng., 125, 123-133. http://doi.org/10.1016/j.compositesb.2017.05.069.
  9. Chinda, T. (2016), "Investigation of factors affecting a construction waste recycling decision", Civil Eng. Environ. Syst., 33(3), 214-226. https://doi.org/10.1080/10286608.2016.1161030
  10. De Azevedo, A.R., Alexandre, J., Xavier, G.D C. and Pedroti, L.G. (2018), "Recycling paper industry effluent sludge for use in mortars: A sustainability perspective", J. Clean. Prod., 192, 335-346. https://doi.org/10.1016/j.jclepro.2018.05.011.
  11. Deus, R.M., Battistelle, R.A.G. and Silva, G.H.R. (2017), "Current and future environmental impact of household solid waste management scenarios for a region of Brazil: carbon dioxide and energy analysis", J. Clean. Prod., 155, 218-228. https://doi.org/10.1016/j.jclepro.2018.05.011.
  12. Dhand, V., Mittal, G., Rhee, K.Y., Park, S.J. and Hui, D. (2015), "A short review on basalt fiber reinforced polymer composites", Compos. Part B: Eng., 73, 166-180. http://doi.org/10.1016/j.compositesb.2014.12.011.
  13. Fava, G., Ruello, M.L. and Corinaldesi, V. (2011), "Paper mill sludge ash as supplementary cementitious material", J. Mater. Civil Eng., 23(6), 772-776. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000218.
  14. Fenu, L., Forni, D. and Cadoni, E. (2016), "Dynamic behaviour of cement mortars reinforced with glass and basalt fibres", Compos. Part B: Eng., 92, 142-150. https://doi.org/10.1016/j.compositesb.2016.02.035.
  15. Fiore, V., Scalici, T., Di Bella, G. and Valenza, A. (2015), "A review on basalt fibre and its composites", Compos. Part B: Eng., 74, 74-94. https://doi.org/10.1016/j.compositesb.2014.12.034.
  16. Goel, G. and Kalamdhad, A.S. (2017). An investigation on use of paper mill sludge in brick manufacturing", Constr. Build. Mater., 148, 334-343. http://doi.org/10.1016/j.conbuildmat.2017.05.087.
  17. High, C., Seliem, H.M., El-Safty, A. and Rizkalla, S.H. (2015), "Use of basalt fibers for concrete structures", Constr. Build. Mater., 96, 37-46. http://doi.org/10.1016/j.conbuildmat.2015.07.138.
  18. IS12269 (2013), Indian Standard Ordinary Portland Cement, 53 Grade Specification, Bureau of Indian Standards, New Delhi, India.
  19. Jiang, C., Fan, K., Wu, F. and Chen, D. (2014), "Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete", Mater. Des., 58, 187-193. http://doi.org/10.1016/j.matdes.2014.01.056.
  20. Kabay, N. (2014), "Abrasion resistance and fracture energy of concretes with basalt fiber", Constr. Build. Mater., 50, 95-101. https://doi.org/10.1016/j.conbuildmat.2013.09.040.
  21. Kan, Z.B. and Li, Y.R. (2012), "Analysis on mechanical properties and durability of the chopped basalt fiber reinforced concrete", Adv. Mater. Res., 598, 627-630. https://doi.org/10.4028/www.scientific.net/AMR.598.627.
  22. Kizinievic, O., Kizinievic, V. and Malaiskiene, J. (2018), "Analysis of the effect of paper sludge on the properties, microstructure and frost resistance of clay bricks", Constr. Build. Mater., 169, 689-696. https://doi.org/10.1016/j.conbuildmat.2018.03.024.
  23. Li, Z., Ma, J., Ma, H. and Xu, X. (2018), "Properties and applications of basalt fiber and its composites", IOP Conf. Ser.: Earth Environ. Sci., 186, 012052. https://doi.org/10.1088/1755-1315/186/2/012052.
  24. Lin, Y., Zhou, S., Li, F. and Lin, Y. (2012), "Utilization of municipal sewage sludge as additives for the production of eco-cement", J. Hazardous Mater., 213, 457-465. http://doi.org/10.1016/j.jhazmat.2012.02.020.
  25. Lipatov, Y.V., Gutnikov, S.I., Manylov, M.S., Zhukovskaya, E.S. and Lazoryak, B.I. (2015), "High alkali-resistant basalt fiber for reinforcing concrete", Mater. Des., 73, 60-66. https://doi.org/10.1016/j.matdes.2015.02.022.
  26. Mozaffari, E., Kinuthia, J.M., Bai, J. and Wild, S. (2009), "An investigation into the strength development of wastepaper sludge ash blended with ground granulated blast furnace slag", Cement Concrete Res., 39(10), 942-949. https://doi.org/10.1016/j.cemconres.2009.07.001.
  27. Nasir, V., Karimipour, H., Taheri-Behrooz, F. and Shokrieh, M.M. (2012), "Corrosion behaviour and crack formation mechanism of basalt fibre in sulphuric acid", Corros. Sci., 64, 1-7. https://doi.org/10.1016/j.corsci.2012.06.028.
  28. Sarkar, A. and Hajihosseini, M. (2020), "Feasibility of improving the mechanical properties of concrete pavement using basalt fibers", J. Test. Eval., 48(4), 2908-2917. https://doi.org/10.1520/JTE20170729.
  29. Sarkar, A. and Hajihosseini, M. (2020), "The effect of basalt fibre on the mechanical performance of concrete pavement", Road Mater. Pave. Des., 21(6), 1726-1737. https://doi.org/10.1080/14680629.2018.1561379.
  30. Sim, J. and Park, C. (2005), "Characteristics of basalt fiber as a strengthening material for concrete structures", Compos. Part B: Eng., 36(6-7), 504-512. https://doi.org/10.1016/j.compositesb.2005.02.002.
  31. Srividhya, S., Vidjeapriya, R. and Neelamegam, M. (2021), "Enhancing the performance of hyposludge concrete beams using basalt fiber and latex under cyclic loading", Comput. Concrete, 28(1), 93. https://doi.org/10.12989/cac.2021.28.1.093.
  32. Sundaresan, S., Ramamurthy, V. and Meyappan, N. (2021), "Improving mechanical and durability properties of hypo sludge concrete with basalt fibres and SBR latex", Adv. Concrete Constr., 12(4), 327. https://doi.org/10.12989/acc.2021.12.4.327.
  33. Vikas, G. and Sudheer, M. (2017), "A review on properties of basalt fiber reinforced polymer composites", Am. J. Mater. Sci., 7(5), 156-165. https://doi.org/10.5923/j.materials.20170705.07.
  34. Wu, G., Wang, X., Wu, Z., Dong, Z. and Zhang, G. (2015), "Durability of basalt fibers and composites in corrosive environments", J. Compos. Mater., 49(7), 873-887. https://doi.org/10.1177/0021998314526628.
  35. Yao, Y., Zhu, D., Zhang, H., Li, G. and Mobasher, B. (2016), "Tensile behaviors of basalt, carbon, glass, and aramid fabrics under various strain rates", J. Mater. Civil Eng., 28(9), 04016081. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001587.
  36. Yoo, D.Y., Lee, J.H. and Yoon, Y.S. (2013), "Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites", Compos. Struct., 106, 742-753. https://doi.org/10.1016/j.compstruct.2013.07.033.