DOI QR코드

DOI QR Code

Ratcheting assessment of austenitic steel samples at room and elevated temperatures through use of Ahmadzadeh-Varvani Hardening rule

  • Xiaohui Chen (School of Control Engineering, Northeastern University at Qinhuangdao) ;
  • Lang Lang (School of Control Engineering, Northeastern University at Qinhuangdao) ;
  • Hongru Liu (School of Control Engineering, Northeastern University at Qinhuangdao)
  • Received : 2021.09.14
  • Accepted : 2023.08.17
  • Published : 2023.09.25

Abstract

In this study, the uniaxial ratcheting effect of Z2CND18.12N austenitic stainless steel at room and elevated temperatures is firstly simulated based on the Ahmadzadeh-Varvani hardening rule (A-V model), which is embedded into the finite element software ABAQUS by writing the user material subroutine UMAT. The results show that the predicted results of A-V model are lower than the experimental data, and the A-V model is difficult to control ratcheting strain rate. In order to improve the predictive ability of the A-V model, the parameter γ2 of the A-V model is modified using the isotropic hardening criterion, and the extended A-V model is proposed. Comparing the predicted results of the above two models with the experimental data, it is shown that the prediction results of the extended A-V model are in good agreement with the experimental data.

Keywords

Acknowledgement

This work was partly supported by the Natural Science Foundation of Hebei Province of China (No. E2021501011), Central University Basic Scientific Research Business Expenses (No. N2123028).

References

  1. Abaqus User's Manual (2016), Dassault Systems Simulia Corp., Providence, RI, USA.
  2. Abdel-Karim, M. and Ohno, N. (1998), "Uniaxial ratchetting of 316fr steel at room temperature-Part II, Constitutive modeling and simulation", J. Eng. Mater. Technol., 122(1), 35-41. https://doi.org/10.1115/1.482762.
  3. Abdel-Karim, M. and Ohno, N. (2000), "Kinematic hardening model suitable for ratcheting with steady-state", Int. J. Plast., 16, 225-240. https://doi.org/10.1016/S0749-6419(99)00052-2.
  4. Ahmadzadeh, G.R. and Varvani-Farahani, A. (2013a), "Ratcheting assessment of materials based on the modified Armstrong-Frederick hardening rule at various uniaxial stress levels", Fatigue Fract. Eng. Mater. Struct., 36, 1232-1245. https://doi.org/10.1111/ffe.12059.
  5. Ahmadzadeh, G.R. and Varvani-Farahani, A. (2013b), "Ratcheting assessment of steel alloys under step-loading conditions", Mater. Des., 51, 231-241. https://doi.org/10.1016/j.matdes.2013.04.047.
  6. Armstrong, P.J. and Frederick, C.O. (2007), "A mathematical representation of the multiaxial Bauschinger effect", Mater. High Temp., 24, 1-26. https://doi.org/10.3184/096034007X207589.
  7. Bari, S. and Hassan, T. (2002), "An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation", Int. J. Plast., 18, 873-94. https://doi.org/10.1016/S0749-6419(01)00012-2.
  8. Bower, A.F. (1989), "Cyclic hardening properties of hard-drawn copper and rail steel", J. Mech. Phys. Solid., 37, 455-470. https://doi.org/10.1016/0022-5096(89)90024-0.
  9. Burlet, H. and Cailletaud, G. (1986), "Numerical techniques for cyclic plasticity at variable temperature", Eng. Comput., 3, 143-153. https://doi.org/10.1108/eb023652.
  10. Chaboche, J.L. (1986), "Time independent constitutive theories for cyclic plasticity", Int. J. Plast., 2, 149-188. https://doi.org/10.1016/0749-6419(86)90010-0.
  11. Chaboche, J.L. (1991), "On some modifications of kinematic hardening to improve the description of ratcheting effects", Int. J. Plast., 7, 661-678. https://doi.org/10.1016/0749-6419(91)90050-9.
  12. Chen, X. and Jiao, R. (2004), "Modified kinematic hardening rule for multiaxial ratcheting prediction", Int. J. Plast., 20, 871-898. https://doi.org/10.1016/j.ijplas.2003.05.005.
  13. Chen, X., Jiao, R. and Kim, K.S. (2003), "Simulation of ratcheting strain to a high number of cycles under multiaxial loading", Int. J. Solid. Struct., 40, 7449-7461. https://doi.org/10.1016/j.ijsolstr.2003.08.009.
  14. Chen, X., Jiao, R. and Kim, K.S. (2005), "On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel", Int. J. Plast., 6, 161-184. https://doi.org/10.1016/j.ijplas.2004.05.005.
  15. Chen, X.H., Chen, X., Yu, W.W. and Li, D.M. (2016), "Ratcheting behavior of pressurized 90° elbow piping subjected to reversed in-plane bending with a combined hardening model", Int. J. Pres. Vess. Pip., 137, 28-37. https://doi.org/10.1016/j.ijpvp.2015.04.016.
  16. Chen, X.H., Gao, B.J. and Chen, X. (2015), "Evaluation of AF type cyclic plasticity models in ratcheting simulation of pressurized elbow pipes under reversed bending", Steel Compos. Struct., 18(1), 29-50. http://dx.doi.org/10.12989/scs.2016.21.4.703.
  17. Colak, O.U. (2008), "Kinematic hardening rules for modeling uniaxial and multiaxial ratcheting", Mater. Des., 29, 1575-1581. https://doi.org/10.1016/j.matdes.2007.11.003.
  18. Dafalias, Y.F. and Feigenbaum, H.P. (2011), "Biaxial ratchetting with novel variations of kinematic hardening", Int. J. Plast., 27, 479-491. https://doi.org/10.1016/j.ijplas.2010.06.002.
  19. Delobelle, P., Robinet, P. and Bocher, L. (1995), "Experimental study and phenomenological modelization of ratcheting under uniaxial and biaxial loading on an austenitic stainless steel", Int. J. Plast., 11, 295-330. https://doi.org/10.1016/S0749-6419(95)00001-1.
  20. Doring, R., Hoffmeyer, J., Seeger, T. and Vormwald, M. (2003), "A plasticity model for calculating stress-strain sequences under multiaxial nonproportional cyclic loading", Comput. Mater. Sci., 28, 587-596. https://doi.org/10.1016/j.commatsci.2003.08.015.
  21. Foroutan, M., Ahmadzadeh, G.R. and Varvani-Farahani, A. (2018), "Axial and hoop ratcheting assessment in pressurized steel elbow pipes subjected to bending cycles", Thin Wall Struct., 123, 317-23. https://doi.org/10.12989/scs.2016.21.4.703.
  22. Frederick, C.O. and Armstrong, P.J. (2007), "A mathematical representation of the multiaxial bauchinger effect", Mater. High Temp., 24(1), 1-26. https://doi.org/10.3184/096034007X207589.
  23. Halama, R., Markopoulos, A., Janco, R. and Bartecky, M. (2017), "Implementation of MAKOC cyclic plasticity model with memory", Adv. Eng. Softw., 113, 34-46. https://doi.org/10.1016/j.advengsoft.2016.10.009.
  24. Islam, N. and Hassan, T. (2019), "Development of a novel constitutive model for improved structural integrity analysis of piping components", Int. J. Pres. Ves. Pip., 177, 103989. https://doi.org/10.1016/j.ijpvp.2019.103989.
  25. Jiang, Y. and Sehitoglu, H. (1996a), "Modeling of cyclic ratcheting plasticity, part I, development of constitutive relations", ASME J. Appl. Mech., 63, 720-725. https://doi.org/10.1115/1.2823355.
  26. Jiang, Y. and Sehitoglu, H. (1996b), "Modeling of cyclic ratcheting plasticity, part II, comparison of model simulations with experiments", ASME J. Appl. Mech., 63, 726-733. https://doi.org/10.1115/1.2823356.
  27. Kang, G. (2004), "A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation", Mech. Mater., 36, 299-312. https://doi.org/10.1016/S0167-6636(03)00024-3.
  28. Karvan, P. and Varvani-Farahani, A. (2018), "Ratcheting assessment of 304 steel samples by means of two kinematic hardening rules coupled with isotropic hardening descriptions", Int. J. Mech. Sci., 149, 190-200. https://doi.org/10.1016/j.ijmecsci.2018.09.045.
  29. Karvan, P. and Varvani-Farahani, A. (2019), "Isotropic-kinematic hardening framework to assess ratcheting response of steel samples undergoing asymmetric loading cycles", Fatigue Fract. Eng. Mater. Struct., 42(1), 295-306. https://doi.org/10.1111/ffe.12905.
  30. Karvan, P. and Varvani-Farahani, A. (2020), "Uniaxial ratcheting assessment of 304 stainless steel samples undergoing step-loading conditions at room and elevated temperatures", J. Eng. Mater. Technol., 142(3): 031003. https://doi.org/10.1115/1.4045981.
  31. Kobayashi, M. and Ohno, N. (2002), "Implementation of cyclic plasticity models based on a general form of kinematic hardening", Int. J. Numer. Meth. Eng., 53, 2217-2238. https://doi.org/10.1002/nme.384.
  32. Lee, D. and Zaverl, J.F. (1978), "A generalized strain rate dependent constitutive equation for anisotropic metals", Acta Metal, 26(11), 1771-1780. https://doi.org/10.1016/0001-6160(78)90088-3.
  33. Liang, T. (2014), "Study on the ratcheting effect and ratcheting fatigue behavior of Z2CND18.12N piping material after thermal aging process", PhD Thesis, Tianjin University, China.
  34. McDowell, D.L. (1995), "Stress state dependence of cyclic ratcheting behavior of two rail steels", Int. J. Plast., 11, 397-421. https://doi.org/10.1016/S0749-6419(95)00005-4.
  35. Mishra, A., Chellapandi, P. and Suresh Kumar, R. (2015a), "Comparative study of cyclic hardening behavior of SS316L using time independent and dependent constitutive modeling: A simplified semi-implicit integration approach", Trans. Ind. Inst. Metal., 68, 623-631. https://doi.org/10.1007/s12666-014-0492-6.
  36. Mishra, A., Chellapandi, P., Suresh Kumar, R. and Sasikala, G. (2015b), "Effect of temperature rate term while predicting thermal ratcheting of a thin cylinder due to cyclic temperature variation", Trans. Ind. Inst. Metal., 68, 161-169. https://doi.org/10.1007/s12666-015-0546-4.
  37. Mishra, A., Chellapandi, P., Suresh Kumar, R. and Sasikala, G. (2015c), "Effect of frequency of free level fluctuations and hold time on the thermal ratcheting behavior", Int. J. Pres. Ves. Pip., 129-130, 1-11. https://doi.org/10.1016/j.ijpvp.2015.03.004.
  38. Mishra, A., Suresh Kumar, R. and Chellapandi, P. (2014), "Progressive deformation behaviour of thin cylindrical shell under cyclic temperature variation using combined hardening chaboche model", Latin Am. J. Solid. Struct., 11, 980-992. https://doi.org/10.1590/S1679-78252014000600005.
  39. Ohno, N. and Wang, J.D. (1993a), "Kinematic hardening rules with critical state of dynamic recovery, Part I, Formulations and basic features for ratcheting behavior", Int. J. Plast., 9, 375-390. https://doi.org/10.1016/0749-6419(93)90042-O.
  40. Ohno, N. and Wang, J.D. (1993b), "Kinematic hardening rules with critical state of dynamic recovery, Part II, Application to experiments of ratcheting behavior", Int. J. Plast., 9, 391-403. https://doi.org/10.1016/0749-6419(93)90043-P.
  41. Rahman, S.M., Hassan, T. and Corona, E. (2008), "Evaluation of cyclic plasticity models in ratcheting simulation of straight pipes under cyclic bending and steady internal pressure", Int. J. Plast., 24, 1756-1791. https://doi.org/10.1016/j.ijplas.2008.02.010.
  42. Sun, X.Y., Xing, R.S., Yu, W.W. and Chen, X. (2020), "Uniaxial ratcheting deformation of 316LN stainless steel with dynamic strain aging, experiments and simulation", Int. J. Solid. Struct., 207, 196-205. https://doi.org/10.1016/j.ijsolstr.2020.10.017.
  43. Varvani-Farahani, A. (2017), "A comparative study in descriptions of coupled kinematic hardening rules and ratcheting assessment over asymmetric stress cycles", Fatigue Fract. Eng. Mater. Struct., 40(6), 882-893. https://doi.org/10.1111/ffe.12549.
  44. Wang, L., Yu, D., Xue, F., Yu, W., Chen, J. and Chen, X. (2011), "Fatigue behaviors of Z2CND18.12N stainless steel under thermal-mechanical cycling", Acta Metallurgica Sinica (English Lett.), 24, 101-108. https://doi.org/10.11890/1006-7191-112-101.
  45. Yaguchi, M. and Takahashi, Y. (2005), "Ratcheting of viscoplastic material with cyclic softening, Part 2, Application of constitutive models", Int. J. Plast., 21, 835-860. https://doi.org/10.1016/j.ijplas.2004.05.012.
  46. Yu, D., Chen, G., Yu, W., Li, D. and Chen, X. (2012b), "Viscoplastic constitutive modeling on Ohno-Wang kinematic hardening rule for uniaxial ratcheting behavior of Z2CND18.12N steel", Int. J. Plast., 28, 88-101. https://doi.org/10.1016/j.ijplas.2011.06.001.
  47. Yu, D., Chen, X., Yu, W. and Chen, G. (2012a), "Thermo-viscoplastic modeling incorporating dynamic strain aging effect on the uniaxial behavior of Z2CND18.12N steel", Int. J. Plast., 37, 119-139. http://doi.org/10.1016/j.ijplas.2012.05.001.
  48. Zhu, Y., Kang, G., Kan, Q. and Bruhns, O.T. (2014), "Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity", Int. J. Plast., 54, 34-55. https://doi.org/10.1016/j.ijplas.2013.08.004.
  49. Zhu, Y., Kang, G., Kan, Q., Bruhns, O.T. and Liu, Y. (2016), "Thermo-mechanically coupled cyclic elasto-viscoplastic constitutive model of metals theory and application", Int. J. Plast., 79, 111-152. https://doi.org/10.1016/j.ijplas.2015.12.005.