Acknowledgement
This work was partly supported by the Natural Science Foundation of Hebei Province of China (No. E2021501011), Central University Basic Scientific Research Business Expenses (No. N2123028).
References
- Abaqus User's Manual (2016), Dassault Systems Simulia Corp., Providence, RI, USA.
- Abdel-Karim, M. and Ohno, N. (1998), "Uniaxial ratchetting of 316fr steel at room temperature-Part II, Constitutive modeling and simulation", J. Eng. Mater. Technol., 122(1), 35-41. https://doi.org/10.1115/1.482762.
- Abdel-Karim, M. and Ohno, N. (2000), "Kinematic hardening model suitable for ratcheting with steady-state", Int. J. Plast., 16, 225-240. https://doi.org/10.1016/S0749-6419(99)00052-2.
- Ahmadzadeh, G.R. and Varvani-Farahani, A. (2013a), "Ratcheting assessment of materials based on the modified Armstrong-Frederick hardening rule at various uniaxial stress levels", Fatigue Fract. Eng. Mater. Struct., 36, 1232-1245. https://doi.org/10.1111/ffe.12059.
- Ahmadzadeh, G.R. and Varvani-Farahani, A. (2013b), "Ratcheting assessment of steel alloys under step-loading conditions", Mater. Des., 51, 231-241. https://doi.org/10.1016/j.matdes.2013.04.047.
- Armstrong, P.J. and Frederick, C.O. (2007), "A mathematical representation of the multiaxial Bauschinger effect", Mater. High Temp., 24, 1-26. https://doi.org/10.3184/096034007X207589.
- Bari, S. and Hassan, T. (2002), "An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation", Int. J. Plast., 18, 873-94. https://doi.org/10.1016/S0749-6419(01)00012-2.
- Bower, A.F. (1989), "Cyclic hardening properties of hard-drawn copper and rail steel", J. Mech. Phys. Solid., 37, 455-470. https://doi.org/10.1016/0022-5096(89)90024-0.
- Burlet, H. and Cailletaud, G. (1986), "Numerical techniques for cyclic plasticity at variable temperature", Eng. Comput., 3, 143-153. https://doi.org/10.1108/eb023652.
- Chaboche, J.L. (1986), "Time independent constitutive theories for cyclic plasticity", Int. J. Plast., 2, 149-188. https://doi.org/10.1016/0749-6419(86)90010-0.
- Chaboche, J.L. (1991), "On some modifications of kinematic hardening to improve the description of ratcheting effects", Int. J. Plast., 7, 661-678. https://doi.org/10.1016/0749-6419(91)90050-9.
- Chen, X. and Jiao, R. (2004), "Modified kinematic hardening rule for multiaxial ratcheting prediction", Int. J. Plast., 20, 871-898. https://doi.org/10.1016/j.ijplas.2003.05.005.
- Chen, X., Jiao, R. and Kim, K.S. (2003), "Simulation of ratcheting strain to a high number of cycles under multiaxial loading", Int. J. Solid. Struct., 40, 7449-7461. https://doi.org/10.1016/j.ijsolstr.2003.08.009.
- Chen, X., Jiao, R. and Kim, K.S. (2005), "On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel", Int. J. Plast., 6, 161-184. https://doi.org/10.1016/j.ijplas.2004.05.005.
- Chen, X.H., Chen, X., Yu, W.W. and Li, D.M. (2016), "Ratcheting behavior of pressurized 90° elbow piping subjected to reversed in-plane bending with a combined hardening model", Int. J. Pres. Vess. Pip., 137, 28-37. https://doi.org/10.1016/j.ijpvp.2015.04.016.
- Chen, X.H., Gao, B.J. and Chen, X. (2015), "Evaluation of AF type cyclic plasticity models in ratcheting simulation of pressurized elbow pipes under reversed bending", Steel Compos. Struct., 18(1), 29-50. http://dx.doi.org/10.12989/scs.2016.21.4.703.
- Colak, O.U. (2008), "Kinematic hardening rules for modeling uniaxial and multiaxial ratcheting", Mater. Des., 29, 1575-1581. https://doi.org/10.1016/j.matdes.2007.11.003.
- Dafalias, Y.F. and Feigenbaum, H.P. (2011), "Biaxial ratchetting with novel variations of kinematic hardening", Int. J. Plast., 27, 479-491. https://doi.org/10.1016/j.ijplas.2010.06.002.
- Delobelle, P., Robinet, P. and Bocher, L. (1995), "Experimental study and phenomenological modelization of ratcheting under uniaxial and biaxial loading on an austenitic stainless steel", Int. J. Plast., 11, 295-330. https://doi.org/10.1016/S0749-6419(95)00001-1.
- Doring, R., Hoffmeyer, J., Seeger, T. and Vormwald, M. (2003), "A plasticity model for calculating stress-strain sequences under multiaxial nonproportional cyclic loading", Comput. Mater. Sci., 28, 587-596. https://doi.org/10.1016/j.commatsci.2003.08.015.
- Foroutan, M., Ahmadzadeh, G.R. and Varvani-Farahani, A. (2018), "Axial and hoop ratcheting assessment in pressurized steel elbow pipes subjected to bending cycles", Thin Wall Struct., 123, 317-23. https://doi.org/10.12989/scs.2016.21.4.703.
- Frederick, C.O. and Armstrong, P.J. (2007), "A mathematical representation of the multiaxial bauchinger effect", Mater. High Temp., 24(1), 1-26. https://doi.org/10.3184/096034007X207589.
- Halama, R., Markopoulos, A., Janco, R. and Bartecky, M. (2017), "Implementation of MAKOC cyclic plasticity model with memory", Adv. Eng. Softw., 113, 34-46. https://doi.org/10.1016/j.advengsoft.2016.10.009.
- Islam, N. and Hassan, T. (2019), "Development of a novel constitutive model for improved structural integrity analysis of piping components", Int. J. Pres. Ves. Pip., 177, 103989. https://doi.org/10.1016/j.ijpvp.2019.103989.
- Jiang, Y. and Sehitoglu, H. (1996a), "Modeling of cyclic ratcheting plasticity, part I, development of constitutive relations", ASME J. Appl. Mech., 63, 720-725. https://doi.org/10.1115/1.2823355.
- Jiang, Y. and Sehitoglu, H. (1996b), "Modeling of cyclic ratcheting plasticity, part II, comparison of model simulations with experiments", ASME J. Appl. Mech., 63, 726-733. https://doi.org/10.1115/1.2823356.
- Kang, G. (2004), "A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation", Mech. Mater., 36, 299-312. https://doi.org/10.1016/S0167-6636(03)00024-3.
- Karvan, P. and Varvani-Farahani, A. (2018), "Ratcheting assessment of 304 steel samples by means of two kinematic hardening rules coupled with isotropic hardening descriptions", Int. J. Mech. Sci., 149, 190-200. https://doi.org/10.1016/j.ijmecsci.2018.09.045.
- Karvan, P. and Varvani-Farahani, A. (2019), "Isotropic-kinematic hardening framework to assess ratcheting response of steel samples undergoing asymmetric loading cycles", Fatigue Fract. Eng. Mater. Struct., 42(1), 295-306. https://doi.org/10.1111/ffe.12905.
- Karvan, P. and Varvani-Farahani, A. (2020), "Uniaxial ratcheting assessment of 304 stainless steel samples undergoing step-loading conditions at room and elevated temperatures", J. Eng. Mater. Technol., 142(3): 031003. https://doi.org/10.1115/1.4045981.
- Kobayashi, M. and Ohno, N. (2002), "Implementation of cyclic plasticity models based on a general form of kinematic hardening", Int. J. Numer. Meth. Eng., 53, 2217-2238. https://doi.org/10.1002/nme.384.
- Lee, D. and Zaverl, J.F. (1978), "A generalized strain rate dependent constitutive equation for anisotropic metals", Acta Metal, 26(11), 1771-1780. https://doi.org/10.1016/0001-6160(78)90088-3.
- Liang, T. (2014), "Study on the ratcheting effect and ratcheting fatigue behavior of Z2CND18.12N piping material after thermal aging process", PhD Thesis, Tianjin University, China.
- McDowell, D.L. (1995), "Stress state dependence of cyclic ratcheting behavior of two rail steels", Int. J. Plast., 11, 397-421. https://doi.org/10.1016/S0749-6419(95)00005-4.
- Mishra, A., Chellapandi, P. and Suresh Kumar, R. (2015a), "Comparative study of cyclic hardening behavior of SS316L using time independent and dependent constitutive modeling: A simplified semi-implicit integration approach", Trans. Ind. Inst. Metal., 68, 623-631. https://doi.org/10.1007/s12666-014-0492-6.
- Mishra, A., Chellapandi, P., Suresh Kumar, R. and Sasikala, G. (2015b), "Effect of temperature rate term while predicting thermal ratcheting of a thin cylinder due to cyclic temperature variation", Trans. Ind. Inst. Metal., 68, 161-169. https://doi.org/10.1007/s12666-015-0546-4.
- Mishra, A., Chellapandi, P., Suresh Kumar, R. and Sasikala, G. (2015c), "Effect of frequency of free level fluctuations and hold time on the thermal ratcheting behavior", Int. J. Pres. Ves. Pip., 129-130, 1-11. https://doi.org/10.1016/j.ijpvp.2015.03.004.
- Mishra, A., Suresh Kumar, R. and Chellapandi, P. (2014), "Progressive deformation behaviour of thin cylindrical shell under cyclic temperature variation using combined hardening chaboche model", Latin Am. J. Solid. Struct., 11, 980-992. https://doi.org/10.1590/S1679-78252014000600005.
- Ohno, N. and Wang, J.D. (1993a), "Kinematic hardening rules with critical state of dynamic recovery, Part I, Formulations and basic features for ratcheting behavior", Int. J. Plast., 9, 375-390. https://doi.org/10.1016/0749-6419(93)90042-O.
- Ohno, N. and Wang, J.D. (1993b), "Kinematic hardening rules with critical state of dynamic recovery, Part II, Application to experiments of ratcheting behavior", Int. J. Plast., 9, 391-403. https://doi.org/10.1016/0749-6419(93)90043-P.
- Rahman, S.M., Hassan, T. and Corona, E. (2008), "Evaluation of cyclic plasticity models in ratcheting simulation of straight pipes under cyclic bending and steady internal pressure", Int. J. Plast., 24, 1756-1791. https://doi.org/10.1016/j.ijplas.2008.02.010.
- Sun, X.Y., Xing, R.S., Yu, W.W. and Chen, X. (2020), "Uniaxial ratcheting deformation of 316LN stainless steel with dynamic strain aging, experiments and simulation", Int. J. Solid. Struct., 207, 196-205. https://doi.org/10.1016/j.ijsolstr.2020.10.017.
- Varvani-Farahani, A. (2017), "A comparative study in descriptions of coupled kinematic hardening rules and ratcheting assessment over asymmetric stress cycles", Fatigue Fract. Eng. Mater. Struct., 40(6), 882-893. https://doi.org/10.1111/ffe.12549.
- Wang, L., Yu, D., Xue, F., Yu, W., Chen, J. and Chen, X. (2011), "Fatigue behaviors of Z2CND18.12N stainless steel under thermal-mechanical cycling", Acta Metallurgica Sinica (English Lett.), 24, 101-108. https://doi.org/10.11890/1006-7191-112-101.
- Yaguchi, M. and Takahashi, Y. (2005), "Ratcheting of viscoplastic material with cyclic softening, Part 2, Application of constitutive models", Int. J. Plast., 21, 835-860. https://doi.org/10.1016/j.ijplas.2004.05.012.
- Yu, D., Chen, G., Yu, W., Li, D. and Chen, X. (2012b), "Viscoplastic constitutive modeling on Ohno-Wang kinematic hardening rule for uniaxial ratcheting behavior of Z2CND18.12N steel", Int. J. Plast., 28, 88-101. https://doi.org/10.1016/j.ijplas.2011.06.001.
- Yu, D., Chen, X., Yu, W. and Chen, G. (2012a), "Thermo-viscoplastic modeling incorporating dynamic strain aging effect on the uniaxial behavior of Z2CND18.12N steel", Int. J. Plast., 37, 119-139. http://doi.org/10.1016/j.ijplas.2012.05.001.
- Zhu, Y., Kang, G., Kan, Q. and Bruhns, O.T. (2014), "Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity", Int. J. Plast., 54, 34-55. https://doi.org/10.1016/j.ijplas.2013.08.004.
- Zhu, Y., Kang, G., Kan, Q., Bruhns, O.T. and Liu, Y. (2016), "Thermo-mechanically coupled cyclic elasto-viscoplastic constitutive model of metals theory and application", Int. J. Plast., 79, 111-152. https://doi.org/10.1016/j.ijplas.2015.12.005.