DOI QR코드

DOI QR Code

Efficient repair of damaged FRP-reinforced geopolymeric columns using carbon fiber reinforced polymers

  • Mohamed Hechmi El Ouni (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Ali Raza (Department of Civil Engineering, University of Engineering and Technology Taxila) ;
  • Khawar Ali (Department of Civil Engineering, University of Engineering and Technology Taxila)
  • Received : 2022.04.02
  • Accepted : 2023.08.14
  • Published : 2023.09.25

Abstract

Geopolymer concrete (GC) can be competently utilized as a practical replacement for cement to prevent a high carbon footprint and to give a direction toward sustainable concrete construction. Moreover, previous studies mostly focused on the axial response of glass fiber reinforced polymer (glass-FRP) concrete compressive elements without determining the effectiveness of repairing them after their partial damage. The goal of this study is to assess the structural effectiveness of partially damaged GC columns that have been restored using carbon fiber reinforced polymer (carbon-FRP). Bars made of glass-FRP and helix made of glass-FRP are used to reinforce these columns. For comparative study, six of the twelve circular specimens-each measuring 300 mm×1200 mm-are reinforced with steel bars, while the other four are axially strengthened using glass-FRP bars (referred to as GSG columns). The broken columns are repaired and strengthened using carbon-FRP sheets after the specimens have been subjected to concentric and eccentric compression until a 30% loss in axial strength is attained in the post-peak phase. The study investigates the effects of various variables on important response metrics like axial strength, axial deflection, load-deflection response, stiffness index, strength index, ductility index, and damage response. These variables include concentric and eccentric compression, helix pitch, steel bars, carbon-FRP wrapping, and glass-FRP bars. Both before and after the quick repair process, these metrics are evaluated. The results of the investigation show that the axial strengths of the reconstructed SSG and GSG columns are, respectively, 15.3% and 20.9% higher than those of their original counterparts. In addition, compared to their SSG counterparts, the repaired GSG samples exhibit an improvement in average ductility indices of 2.92% and a drop in average stiffness indices of 3.2%.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group research program under grant number RGP 2/130/44.

References

  1. Ahmad, A. and Khan, Q.U.Z. and Raza, A. (2020), "Reliability analysis of strength models for CFRP-confined concrete cylinders", Compos. Struct., 244, 112312. https://doi.org/10.1016/j.compstruct.2020.112312.
  2. Alhazmi, H., Shah, S.A.R., Anwar, M.K., Raza, A., Ullah, M.K. and Iqbal, F. (2021), "Utilization of polymer concrete composites for a circular economy: A comparative review for assessment of recycling and waste utilization", Polym., 13(13), 2135. https://doi.org/10.3390/polym13132135.
  3. Alomayri, T. (2019), "Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al2O3)", J. Build. Eng., 25, 100788. https://doi.org/10.1016/j.jobe.2019.100788.
  4. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181.
  5. Aslam, H.M.U., Khan, Q.U.Z., Sami, A. and Raza, A. (2021), "Axial compressive response of damaged steel and GFRP bars reinforced concrete columns retrofitted with CFRP laminates", Compos. Struct., 258, 113206. https://doi.org/10.1016/j.compstruct.2020.113206.
  6. Aslam, H.M.U., Sami, A. and Raza, A. (2021), "Axial compressive response of damaged steel and GFRP bars reinforced concrete columns retrofitted with CFRP laminates", Compos. Struct., 258, 113206. https://doi.org/10.1016/j.compstruct.2020.113206.
  7. ASTM C807-13, Standard Test Method for Time of Setting of Hydraulic Cement Mortar by Modified Vicat Needle, West Conshohocken, Pennsylvania, USA.
  8. ASTM/C143 (2005), Standard Test Method for Slump of Hydraulic Cement Concrete, ASTM International, West Conshohocken, PA.
  9. Bank, L.C. (2006), Composites for Construction, Structural Design with FRP Materials, John Wiley & Sons.
  10. Barros, J.A., Varma, R.K., Sena-Cruz, J.M. and Azevedo, A.F. (2008), "Near surface mounted CFRP strips for the flexural strengthening of RC columns: Experimental and numerical research", Eng. Struct., 30(12), 3412-3425. https://doi.org/10.1016/j.engstruct.2008.05.019.
  11. Berthet, J., Ferrier, E. and Hamelin, P. (2005), "Compressive response of concrete externally confined by composite jackets. Part A: Experimental study", Constr. Build. Mater., 19(3), 223-232. https://doi.org/10.1016/j.conbuildmat.2004.05.012.
  12. Britto, J. and Muthuraj, M. (2019), "Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS", Struct. Eng. Mech., 70(6), 671-681. https://doi.org/10.12989/sem.2019.70.6.671.
  13. Canadian Standard Association (2012), Design and Construction of Building Structures with Fibre-Reinforced Polymer, CAN/CSA S806-12, Toronto, ON, Canada.
  14. Carey, S.A. and Harries, K.A. (2005), "Axial response and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer jackets", ACI Struct. J., 102(4), 596-604. https://doi.org/10.14359/14564.
  15. Chaallal, O. and Shahawy, M. (2000), "Behavior of fiber-reinforced polymer-wrapped reinforced concrete column under combined axial-flexural loading", Struct. J., 97(4), 659-668. https://doi.org/10.14359/7433.
  16. Charalambidi, B.G., Rousakis, T.C. and Karabinis, A.I. ((2016), "Fatigue response of large-scale reinforced concrete beams strengthened in flexure with fiber-reinforced polymer laminates", J. Compos. Constr., 20(5), 04016035. https://doi.org/10.1061/(ASCE)CC.1943-5614.00006.
  17. Chellapandian, M. and Prakash, S.S. (2018), "Rapid repair of severely damaged reinforced concrete columns under combined axial compression and flexure, An experimental study", Constr. Build. Mater., 173, 368-380. https://doi.org/10.1016/j.conbuildmat.2018.04.037.
  18. Chellapandian, M., Prakash, S.S. and Sharma, A. (2019), "Axial compression-bending interaction response of severely damaged RC columns rapid repaired and strengthened using hybrid FRP composites", Constr. Build. Mater., 195, 390-404. https://doi.org/10.1016/j.conbuildmat.2018.11.090.
  19. Chung, Y.S., Park, C.K. and Meyer, C. (2008), "Residual seismic performance of reinforced concrete bridge piers after moderate earthquakes", ACI Struct. J., 105(1), 87.
  20. Danda, U.K. (2020), "Experimental study on reinforced geopolymer concrete columns using GGBS", Mater. Today, Proc., 33(1), 632-636. https://doi.org/10.1016/j.matpr.2020.05.607.
  21. Eid, R., Roy, N. and Paultre, P. (2009), "Normal-and high-strength concrete circular elements wrapped with FRP composites", J. Compos. Constr., 13(2), 113-124. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(113).
  22. El Maaddawy, T. (2008), "Post-repair performance of eccentrically loaded RC columns wrapped with CFRP composites", Cement Concrete Compos., 30(9), 822-830. https://doi.org/10.1016/j.cemconcomp.2008.06.009.
  23. El Maaddawy, T. (2009), "Strengthening of eccentrically loaded reinforced concrete columns with fiber-reinforced polymer wrapping system, Experimental investigation and analytical modeling", J. Compos. Constr, 13(1), 13-24. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:1(13).
  24. Elkin, S.J., Nacamuli, A.M., Lehman, D.E. and Moehle, J.P. (1999), "Seismic performance of damaged bridge columns", Earthq. Eng. Eng. Seismol., 1(1), 39-50.
  25. Elshamandy, M.G., Farghaly, A.S. and Benmokrane, B. (2018), "Experimental behavior of glass fiber-reinforced polymer-reinforced concrete columns under lateral cyclic load", ACI Struct. J., 115(2), 337-349. https://doi.org/10.14359/51700985.
  26. Guo, Y., Xie, J., Xie, Z. and Zhong, J. (2016), "Experimental study on compressive Behavior of damaged normal-and high-strength concrete confined with CFRP laminates", Constr. Build. Mater., 107, 411-425. https://doi.org/10.1016/j.conbuildmat.2016.01.010.
  27. Guo, Z., Xue, X., Ye, M., Chen, Y. and Li, Z. (2021), "Experimental research on pultruded concrete-filled GFRP tubular short columns externally strengthened with CFRP", Compos. Struct., 255, 112943. https://doi.org/10.1016/j.compstruct.2020.112943.
  28. Hadi, M.N. (2006), "Comparative study of eccentrically loaded FRP wrapped columns", Compos. Struct., 74(2), 127-135. https://doi.org/10.1016/j.compstruct.2005.03.013.
  29. Hadi, M.N. and Zhao, H. (2011), "Experimental study of high-strength concrete columns confined with different types of mesh under eccentric and concentric loads", J. Mater. Civil Eng., 23(6), 823-832. https://doi.org/10.1061/(ASCE)MT.1943-5533.00002.
  30. Hadi, M.N., Ahmad, J. and Yu, T. (2020), "Tests of geopolymer concrete columns with basalt-fibre-reinforced-polymer bars and tubes", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 1-41. https://doi.org/10.1680/jstbu.19.00227.
  31. Hassan, A., Arif, M. and Shariq, M. (2019), "Use of geopolymer concrete for a cleaner and sustainable environment-A review of mechanical properties and microstructure", J Clean. Prod., 223, 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051.
  32. Ilki, A., Kumbasar, N. and Koc, V. (2004), "Low strength concrete members externally confined with FRP sheets", Struct.l Eng. Mech., 18(2), 167-194. https://doi.org/10.12989/sem.2004.18.2.167.
  33. Ilki, A., Peker, O., Karamuk, E., Demir, C. and Kumbasar, N. (2008), "FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns", J. Mater. Civil Eng., 20(2), 169-188. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(169).
  34. Jin, L., Chen, H., Wang, Z. and Du, X. (2020), "Size effect on axial compressive failure of CFRP-wrapped square concrete columns, Tests and simulations", Compos. Struct., 254, 112843. https://doi.org/10.1016/j.compstruct.2020.112843.
  35. Kankeri, P. and Prakash, S.S. (2016), "Experimental evaluation of bonded overlay and NSM GFRP bar strengthening on flexural response of precast prestressed hollow core slabs", Eng. Struct., 120, 49-57. https://doi.org/10.1016/j.engstruct.2016.04.033.
  36. Kankeri, P. and Prakash, S.S. (2017), "Efficient hybrid strengthening for precast hollow core slabs at low and high shear span to depth ratios", Compos. Struct., 170, 202-214. https://doi.org/10.1016/j.compstruct.2017.03.034.
  37. Kankeri, P., Prakash, S.S. and Pachalla, S.K.S. (2018), "Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques", Struct. Eng. Mech., 65(5), 535-546. https://doi.org/10.12989/sem.2018.65.5.535.
  38. Karantzikis, M., Papanicolaou, C.G., Antonopoulos, C.P. and Triantafillou T.C. (2005), "Experimental investigation of nonconventional confinement for concrete using FRP", J. Compos. Constr., 9(6), 480-487. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(480).
  39. Kumutha, R. and Palanichamy, M. (2006), "Investigation of reinforced concrete columns confined using glass fiber-reinforced polymers", J. Reinf. Plast. Compos., 25(16), 1669-1678. https://doi.org/10.1177/0731684406068409.
  40. Liang, J.F., Zou, W.J., Wang Z.L. and Liu D. (2019), "Compressive response of CFRP-confined partially encased concrete columns under axial loading", Compos. Struct., 229, 111479. https://doi.org/10.1016/j.compstruct.2019.111479.
  41. Lignola, G.P., Prota, A., Manfredi, G. and Cosenza, E. (2007), "Deformability of reinforced concrete hollow columns confined with CFRP", ACI Struct. J., 104(5), 629-637. https://doi.org/10.14359/18865.
  42. Ma, C.K., Apandi, N.M., Sofrie, C.S.Y., Ng, J.H., Lo, W.H., Awang, A.Z. and Omar, W. (2017), "Repair and rehabilitation of concrete structures using confinement: A review", Constr. Build. Mater., 133, 502-515. https://doi.org/10.1016/j.conbuildmat.2016.12.100.
  43. Ma, H., Wu, Y., Huang, C. and Zhao, Y. (2021), "Mechanical properties and bearing capacity of CFRP confined steel reinforced recycled concrete columns under axial compression loading", Struct. Eng. Mech., 79(4), 451-472. https://doi.org/10.12989/sem.2021.79.4.451.
  44. Maaddawy, T.E. (2009), "Strengthening of eccentrically loaded reinforced concrete columns with fiber-reinforced polymer wrapping system, Experimental investigation and analytical modeling", J. Compos. Constr., 13(1), 13-24. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:1(13).
  45. Maranan, G., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2016), "Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars", Eng. Struct., 117, 422-436. https://doi.org/10.1016/j.engstruct.2016.03.036.
  46. Maruyama, I., Rymes, J., Aili, A., Sawada, S., Kontani, O., Ueda, S. and Shimamoto, R. (2021), "Long-term use of modern Portland cement concrete, The impact of Al-tobermorite formation", Mater. Des., 198, 109297. https://doi.org/10.1016/j.matdes.2020.109297.
  47. Mercimek, O., Anil, O., Ghoroubi, R., Sakin, S. and Yilmaz, T. (2021), "Experimental and numerical investigation of RC column strengthening with CFRP strips subjected to low-velocity impact load", Struct. Eng. Mech., 79(6), 749-765. https://doi.org/10.12989/sem.2021.79.6.749.
  48. Mirmiran, A., Shahawy, M., Samaan, M., Echary, H.E., Mastrapa, J.C. and Pico, O. (1998), "Effect of column parameters on FRP-confined concrete", J. Compos. Constr., 2(4), 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175).
  49. Nanni, A. and Bradford, N.M. (1995), "FRP jacketed concrete under uniaxial compression", Constr. Build. Mater., 9(2), 115-124. https://doi.org/10.1016/0950-0618(95)00004-Y.
  50. Narule, G.N. and Bambole, A.N. (2018), "Axial response of CFRP wrapped RC columns of different shapes with constant slenderness ratio", Struct. Eng. Mech., 65(6), 679-687. https://doi.org/10.12989/sem.2018.65.6.679.
  51. Nematzadeh, M., Baradaran-Nasiri, A. and Hosseini, M. (2019), "Effect of pozzolans on mechanical response of recycled refractory brick concrete in fire", Struct. Eng. Mech., 72(3), 339-354. https://doi.org/10.12989/sem.2019.72.3.339.
  52. Parvin, A., Altay, S., Yalcin, C. and Kaya, O. (2010), "CFRP rehabilitation of concrete frame joints with inadequate shear and anchorage details", J. Compos. Constr., 14(1), 72-82. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000055.
  53. Rashedi, A., Marzouki, R., Raza, A., Rawi, N.F.M. and Naveen, J. (2021), "Mechanical, fracture, and microstructural assessment of carbon-fiber-reinforced geopolymer composites containing Na2O", Polym., 13(21), 3852. https://doi.org/10.3390/polym13213852.
  54. Rashedi, A., Sridhar, I., Tseng, K. and Srikanth, N. (2015), "Minimum mass design of thin tubular structures under eccentric compressive loading", Thin Wall. Struct., 90, 191-201. https://doi.org/10.1016/j.tws.2015.01.006.
  55. Raza, A. and Rafique, U. (2020), "Efficiency of GFRP bars and hoops in recycled aggregate concrete columns, Experimental and numerical study", Compos. Struct., 255, 112986. https://doi.org/10.1016/j.compstruct.2020.112986.
  56. Raza, A., Alomayri, T. and Berradia, M. (2021), "Rapid repair of partially damaged GFRP-reinforced recycled aggregate concrete columns using FRP composites", Mech. Adv. Mater. Struct., 29(27), 6070-6086. https://doi.org/10.1080/15376494.2021.1972368.
  57. Raza, A., Khan, Q. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS", Adv. Civil Eng., 2019, Article ID 1745341. https://doi.org/10.1155/2019/1745341.
  58. Raza, A., Khan, Q. and Ahmad, A. (2021), "Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings", Eng. Struct., 227, 111461. https://doi.org/10.1016/j.engstruct.2020.111461.
  59. Raza, A., Rafique, U., Masood, B., Ali, B., ul Haq, F. and Nawaz, M.A. (2021), "Performance evaluation of hybrid fiber reinforced low strength concrete cylinders confined with CFRP wraps", Struct., 31, 182-189. https://doi.org/10.1016/j.istruc.2021.01.103.
  60. Raza, A., Rashedi, A., Rafique, U., Hossain, N., Akinyemi, B. and Naveen, J. (2021), "On the structural response of recycled aggregate concrete columns with glass fiber-reinforced composite bars and hoops", Polym., 13(9), 1508. https://doi.org/10.3390/polym13091508.
  61. Raza, A., Shah, S.A.R., Alhazmi, H., Abrar, M. and Razzaq, S. (2021), "Strength profile pattern of FRP-reinforced concrete structures, a response analysis through finite element analysis and empirical modeling technique", Polym., 13(8), 1265. https://doi.org/10.3390/polym13081265.
  62. Rousakis, T.C. (2016), "Reusable and recyclable nonbonded composite tapes and ropes for concrete columns confinement", Compos. Part B Eng., 103, 15-22. https://doi.org/10.1016/j.compositesb.2016.08.003.
  63. Sami, A., Khan, Q.U.Z., Azam, A., Raza, A. and Berradia, M. (2022), "Performance of repaired macro synthetic structural fibers and glass-FRP reinforced concrete columns", Iran. J. Sci. Technol., Trans. Civil Eng., 47, 149-168. https://doi.org/10.1007/s40996-022-00966-y.
  64. Saranya, P., Nagarajan, P. and Shashikala, A. (2020), "Behaviour of GGBS-dolomite geopolymer concrete short column under axial loading", J. Build. Eng., 30, 101232. https://doi.org/10.1016/j.jobe.2020.101232.
  65. Seible, F., Priestley, M.N., Hegemier, G.A. and Innamorato, D. (1997), "Seismic retrofit of RC columns with continuous carbon fiber jackets", J. Compos. Constr., 1(2), 52-62. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(52).
  66. Sharifi, Y. and Moghbeli, A. (2021), "New empirical approaches for compressive strength assessment of CFRP confined rectangular concrete columns", Compos. Struct., 262, 113373. https://doi.org/10.1016/j.compstruct.2020.113373.
  67. Shehata, I.A., Carneiro, L.A. and Shehata, L.C. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct., 35(1), 50-58. https://doi.org/10.1007/BF02482090.
  68. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2014), "Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios", ACI Struct. J., 111(2), 375. https://doi.org/10.14359/51686528.
  69. Triantafyllou, G.G., Rousakis, T.C. and Karabinis, A.I. (2017), "Corroded RC beams patch repaired and strengthened in flexure with fiber-reinforced polymer laminates", Compos. Part B Eng., 112, 125-136. https://doi.org/10.1016/j.compositesb.2016.12.032.
  70. Triantafyllou, G.G., Rousakis, T.C. and Karabinis, A.I. (2018), "Effect of patch repair and strengthening with EBR and NSM CFRP laminates for RC beams with low, medium and heavy corrosion", Compos. Part B Eng., 133, 101-111. https://doi.org/10.1016/j.compositesb.2017.09.029.
  71. Vosooghi, A. and Saiidi, M.S. (2013), "Shake-table studies of repaired reinforced concrete bridge columns using carbon fiber-reinforced polymer fabrics", ACI Struct. J., 110(1), 105-114. https://doi.org/10.14359/51684334.
  72. Xu, Y., Tang, H., Chen, J., Jia, Y. and Liu, R. (2021), "Numerical analysis of CFRP-confined concrete-filled stainless steel tubular stub columns under axial compression", J. Build. Eng., 37, 102130. https://doi.org/10.1016/j.jobe.2020.102130.
  73. Yang, J., Wang, J. and Wang, Z. (2020), "Axial compressive response of partially CFRP confined seawater sea-sand concrete in circular columns-Part I, Experimental study", Compos. Struct., 246, 112373. https://doi.org/10.1016/j.compstruct.2020.112373.
  74. Yi, W.J., Xian, Q.l., Ding, H.T. and Zhang, H.Y. (2006), "Experimental study of RC columns strengthened with CFRP sheets under eccentric compression", Spec. Publ., 238, 395-410. https://doi.org/10.14359/18284.