DOI QR코드

DOI QR Code

Comparative study by the finite element method of three activities of a wearer of total hip prosthesis during the postoperative period

  • Abdelmadjid Moulgada (Department of Mechanical Engineering, University of Ibn Khaldoun Tiaret) ;
  • Mohammed El Sallah Zagane (Department of Mechanical Engineering, University of Ibn Khaldoun Tiaret) ;
  • Murat Yaylaci (Biomedical Engineering MSc Program, Recep Tayyip Erdogan University) ;
  • Ait Kaci Djafar (Department of Mechanical Engineering, LMPM Laboratory, University of Djillali Liabes Sidi Bel Abbes) ;
  • Sahli Abderahmane (Department of Mechanical Engineering, LMPM Laboratory, University of Djillali Liabes Sidi Bel Abbes) ;
  • Sevval Ozturk (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Ecren Uzun Yaylaci (Faculty of Engineering and Architecture, Recep Tayyip Erdogan University)
  • Received : 2023.05.24
  • Accepted : 2023.08.14
  • Published : 2023.09.25

Abstract

The postoperative period for a carrier of total hip prosthesis (THP), especially in the first months, remains the most difficult period for a patient after each operation, even if traumatologist surgeons want the relief and success of their operations. In this investigation, selected three of the daily activities for a wearer of total hip replacement (THR), such as sitting in a chair, lifting a chair, and going downstairs, and was performed a numerical simulation by finite elements based on experimental data by Bergmann (Bergmann 2001) in terms of effort for each activity. Different stresses have been extracted, and a detailed comparison between two activities with different induced stresses such as normal, tensile, and compressive shear stresses.

Keywords

References

  1. Benouis, A., Zagane, M.S., Boulenouar, A., Serier, B. and Belgherras, M.E. (2018), "3D FE analysis of the behavior of elliptical cracks on orthopedic cement of the total hip prosthesis", J. Theor. Appl. Mech., 56(3), 803-813. https://doi.org/10.15632/jtam-pl.56.3.803.
  2. Bergmann, G. (2001), HIP98, Free University, Berlin,
  3. Chalernpon, K., Aroonjarattham, P. and Aroonjarattham, K. (2015), "Static and dynamic load on hip contact of hip prosthesis and Thai femoral bones", Int. J. Mech. Mechatron. Eng., 9(3), 251-255. https://doi.org/10.5281/zenodo.1099670.
  4. Charef, D. and Serier, B. (2015), "Effects of dynamic loading on the mechanical behavior of total hip prosthesis", J. Biomech. Sci. Eng., 10(4), 15-00115. https://doi.org/10.1299/jbse.15-00115.
  5. Chethan, K.N., Zuber, M., Shenoy, S. and Kini, C.R. (2019), "Static structural analysis of different stem designs used in total hip arthroplasty using finite element method", Heliyon, 5(6), e01767. https://doi.org/10.1016/j.heliyon.2019.e01767.
  6. Cinnamon, C.C., Longworth, J.A., Brunner, J.H., Chau, V.K., Ryan, C.A., Dapiton, K.R. and Foucher, K.C. (2019), "Static and dynamic abductor function are both associated with physical function 1 to 5 years after total hip arthroplasty", Clin. Biomech., 67, 127-133. https://doi.org/10.1016/j.clinbiomech.2019.05.009.
  7. Colgan, G., Walsh, M., Bennett, D., Rice, J. and O'brien, T. (2016), "Gait analysis and hip extensor function early post total hip replacement", J. Orthop., 13(3), 171-176. https://doi.org/10.1016/j.jor.2016.03.005.
  8. Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S. and Djordjevic, B. (2016), "Finite element modeling of hip implant static loading", Procedia Eng., 149, 257-262. https://doi.org/10.1016/j.proeng.2016.06.664.
  9. Darwich, A., Nazha, H. and Abbas, W. (2019), "Numerical study of stress shielding evaluation of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials", Biomed. Res., 30(1), 169-174. https://doi.org/10.35841/biomedicalresearch.30-18-1048
  10. Fernandes, F.A.O. and de Sousa, R.J.A. (2013), "Finite element analysis of helmeted oblique impacts and head injury evaluation with a commercial road helmet", Struct. Eng. Mech., 48(5), 661-679. https://doi.org/10.12989/sem.2013.48.5.661.
  11. Gasmi, B., Abderrahmene, S., Smail, B. and Benaoumeur, A. (2019), "Initiation and propagation of a crack in the orthopedic cement of a THR using XFEM", Adv. Comput. Des., 4(3), 295-305. https://doi.org/10.12989/acd.2019.4.3.295.
  12. GulshanTaj, M.N.A., Chakrabarti, A., Malathy, R. and Kumar, S.R.R.S. (2021), "Finite element analysis of functionally graded sandwich plates under nonlinear sense for aerospace applications", Struct. Eng. Mech., 80(3), 341-353. https://doi.org/10.12989/sem.2021.80.3.341.
  13. Guvercin, Y., Abdioglu, A.A., Dizdar, A., Uzun Yaylaci, E. and Yaylaci, M. (2022a), "Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method", Injury, 53(7), 2437-2445. https://doi.org/10.1016/j.injury.2022.05.037.
  14. Guvercin, Y., Yaylaci, M., Dizdar, A., Kanat, A., Uzun Yaylaci, E. and Ay, S. (2022b), "Biomechanical analysis of odontoid and transverse atlantal ligament in humans with ponticulus posticus variation under different loading conditions: Finite element study", Injury, 53, 3879-3886. https://doi.org/10.1016/j.injury.2022.10.003.
  15. Guvercin, Y., Yaylaci, M., Olmez, H., Uzun Yaylaci, E., Ozdemir, M.E. and Dizdar, A. (2022c), "Finite element analysis of the mechanical behavior of the different angle hip femoral stem", Biomater. Biomech. Bioeng., 6(1), 29-46. https://doi.org/10.12989/bme.2022.6.1.029.
  16. Hanusova, P., Palcek, P., Uhricik, M. and Melisik, M. (2020), "A study of hip joint replacement failure", Mater Today: Proc., 32, 179-182. https://doi.org/10.1016/j.matpr.2020.04.532.
  17. Kayabasi, O. and Ekici, B. (2007), "The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method", Mater. Des., 28(8), 2269-2277. https://doi.org/10.1016/j.matdes.2006.08.012.
  18. Lazzari, P.M., Filho, A.C., Lazzari, B.M., Pacheco, A.R. and Gomes, R.R.S. (2019), "Numerical simulation of the constructive steps of a cable-stayed bridge using ANSYS", Struct. Eng. Mech., 69(3), 269-281. https://doi.org/10.12989/sem.2019.69.3.269.
  19. Lunn, D.E., Lampropoulos, A. and Stewart, T.D. (2016), "Basic biomechanics of the hip", Orthop. Trauma., 30(3), 239-246. https://doi.org/10.1016/j.mporth.2016.04.014.
  20. Mohamed, C., Abderahmane, S. and Benbarek, S. (2018), "Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement", Struct. Eng. Mech., 66(1), 37-43. https://doi.org/10.12989/sem.2018.66.1.037.
  21. Mohamed, C., Smail, B., Bouiadjra, B. and Serier, B. (2016), "Numerical modeless of the damage, around inclusion in the orthopedic cement PMMA", Struct. Eng. Mech., 57(4), 717-731. https://doi.org/10.12989/sem.2016.57.4.717.
  22. Moulgada, A., Bouziane, M.M., Bouiadjra, B.B., Benbarek, S., Albedah, A. and Achour, T. (2014), "Finite element simulation of stress distribution in the different components of Ceraver-Osteal hip prosthesis: static and dynamic analysis", Mech., 20(5), 452-459. https://doi.org/10.5755/j01.mech.20.5.5372.
  23. Pop, T., Szymczyk, D., Majewska, J., Bejer, A., Baran, J., Bielecki, A. and Rusek, W. (2018), "The assessment of static balance in patients after total hip replacement in the period of 2-3 years after surgery", Biomed. Res. Int., 2018, Article ID 3707254. https://doi.org/10.1155/2018/3707254.
  24. Qu, C. and Qin, Q.H. (2006), "Evolution of bone structure under axial and transverse loads", Struct. Eng. Mech., 24(1), 19-29. https://doi.org/10.12989/sem.2006.24.1.019.
  25. Senalp, A.Z., Kayabasi, O. and Kurtaran, H. (2007), "Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis", Mater. Des., 28(5), 1577-1583. https://doi.org/10.1016/j.matdes.2006.02.015.
  26. Tabeshpour, M.R. and Arasteh, A.M. (2019), "A new method for infill equivalent strut width", Struct. Eng. Mech., 69(3), 257-268. https://doi.org/10.12989/sem.2019.69.3.257.
  27. Turan, M., Uzun Yaylaci, E. and Yaylaci, M. (2023), "Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods", Arch. Appl. Mech., 93, 1351-1372. https://doi.org/10.1007/s00419-022-02332-w.
  28. Uzun Yaylaci, E., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
  29. Vogel, D., Hembus, J., Jackszis, M., Bolte, V. and Ader, R. (2020), "Influence of different damage patterns of the stem taper on fixation and fracture strength of ceramic ball heads for total hip replacement", Biomed. Res. Int., 2020, Article ID 7542062. https://doi.org/10.1155/2020/7542062.
  30. Warenczak, A. and Lisinski, P. (2020), "Body balance a few years after total hip replacement", Acta Bioeng. Biomech., 22(1), 87-96. https://doi.org/10.37190/ABB-01480-2019-02.
  31. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., Olmez, H., Sekban, M.D. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel. Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  32. Yaylaci, M., Sengul Sabano, B., O zdemir, M.E. and Birinci, A. (2022a), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-16. https://doi.org/10.12989/sem.2022.82.3.401.
  33. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ay, S. and Ozturk, S. (2022b), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel. Compos. Struct., 45(4), 501-11. https://doi.org/10.12989/scs.2022.45.4.501.
  34. Zagane, M.S., Benouis, A., Moulgada, A., Djebbar, N. and Sahli, A. (2020), "Biomechanical behaviour of the total hip prosthesis subjected to normal gait cycle load: identification of the damage in the cement mantle", J. Serb. Soc. Comput. Mech., 14(2), 14-30. https://doi.org/10.24874/jsscm.2020.14.02.02.
  35. Zagane, M.S., Moulgada, A., Yaylaci, M., Sahli, A., Ozdemir, M.E. and Yaylaci, E.U. (2023), "Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)", Struct. Eng. Mech, 86(5), 635-645. https://doi.org/10.12989/sem.2023.86.5.635.