DOI QR코드

DOI QR Code

Perception of Fashion Designer's Capability and Product Quality -Human vs. Human+AI vs. AI-

패션 디자인 주체에 따른 패션디자이너 역량 및 제품 품질 지각 -Human vs. Human+AI vs. AI-

  • Ju-ri Jung (Dept. of Textiles, Merchandising, and Fashion Design, Seoul National University) ;
  • Seyoon Jang (Dept. of Textiles, Merchandising, and Fashion Design, Seoul National University) ;
  • Yuri Lee (Dept. of Textiles, Merchandising, and Fashion Design, Seoul National University/Research Institute of Human Ecology, Seoul National University)
  • 정주리 (서울대학교 의류학과) ;
  • 장세윤 (서울대학교 의류학과) ;
  • 이유리 (서울대학교 의류학과/서울대학교 생활과학연구소)
  • Received : 2023.05.22
  • Accepted : 2023.08.08
  • Published : 2023.08.31

Abstract

Collaboration between AI and fashion designers is becoming essential. Thus, this study explored (1) 321 consumer responses to fashion designers, comparing their capabilities and product quality across different designer types, (2) the relationship between designer capabilities and perceived product quality, and (3) the moderating role of AI knowledge in the effect of capabilities on perceived product quality. Data were analyzed using EFA, ANOVA, regression, and moderation analysis. The results indicated that subjects perceived human designers as having higher capabilities and perceived product quality than AI designers. All subjects' perceived creativity and empathy significantly impacted the perceived functionality, aesthetics, and symbolism-sociality of clothing. Additionally, the perceived creativity of AI and human+AI designers, and the perceived empathy of human and human+AI designers, significantly influenced the perceived functionality and symbolism-sociality, but the perceived creativity of human designers and empathy of AI designers did not directly impact perceived functionality and symbolism-sociality. Moreover, perceptions of the designers' capabilities significantly aesthetics in all subjects. Furthermore, low levels of perceived consumer AI knowledge enhanced the positive impact of perceived human+AI designers' creativity and empathy on perceived functionality and aesthetics. The study suggests that fashion companies should refrain from revealing AI designers at this time.

Keywords

Acknowledgement

본 연구는 한국콘텐츠진흥원의 '소상공인의 패션디자인 향상을 위한 지능형 패션 수요 예측 및 판로 분석 기술 개발(R2020040102)' 사업의 연구비를 지원받아 수행되었음.

References

  1. Aakko, M., & Niinimaki, K. (2018). Fashion designers as entrepreneurs: Challenges and advantages of micro-size companies. Fashion Practice, 10(3), 354-380. https://doi.org/10.1080/17569370.2018.1507148 
  2. Aakko, M., & Niinimaki, K. (2022). Quality matters: Reviewing the connections between perceived quality and clothing use time. Journal of Fashion Marketing and Management, 26(1), 107-125. https://doi.org/10.1108/JFMM-09-2020-0192 
  3. Abraham-Murali, L., & Littrell, M. A. (1995). Consumers' conceptualization of apparel attributes. Clothing and Textiles Research Journal, 13(2), 65-74. https://doi.org/10.1177/0887302X9501300201 
  4. Babu, M. M., Akter, S., Rahman, M., Billah, M. M., & Hack-Polay, D. (2022). The role of artificial intelligence in shaping the future of agile fashion industry. Production Planning & Control. Advance online publication. https://doi.org/10.1080/09537287.2022.2060858 
  5. Battarbee, K., & Koskinen, I. (2005). Co-experience: User experience as interaction. CoDesign, 1(1), 5-18. https://doi.org/10.1080/15710880412331289917 
  6. Boden, M. (1994). Dimensions of creativity. MIT Press. https://doi.org/10.7551/mitpress/2437.001.0001 
  7. Carvalho, A., Levitt, A., Levitt, S., Khaddam, E., & Benamati, J. (2019). Off-the-shelf artificial intelligence technologies for sentiment and emotion analysis: A tutorial on using IBM natural language processing. Communications of the Association for Information Systems, 44(1), 918-943. https://doi.org/10.17705/1CAIS.04443 
  8. Castelo, N., Bos, M. W., & Lehmann, D. R. (2019). Task-dependent algorithm aversion. Journal of Marketing Research, 56(5), 809-825. https://doi.org/10.1177/0022243719851788 
  9. Chang, S. B., & Yi, C. Y. (2015). Effects of web designer's creative traits on job performance perceptions and satisfaction. Journal of Digital Design, 15(3), 489-499. https://doi.org/10.17280/jdd.2015.15.3.046 
  10. Choi, S.-J., Lim, H.-K., & Park, Y.-S. (2009). Impact of self-leadership on the enhancement of performance of customer service representatives in a customer center. Journal of Industrial Economics and Business, 22(4), 1807-1832. 
  11. Chung, J. (2019). Influence of designer's empathy ability and empathy trial through consumer research on design outcomes. Journal of Industrial Design Studies, 13(2), 70-81. https://doi.org/10.37254/ids.2019.06.48.07.71 
  12. Cockburn, I. M., Henderson, R., & Stern, S. (2018). The impact of artificial intelligence on innovation: An exploratory analysis. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The economics of artificial intelligence: An agenda (pp. 115-146). University of Chicago Press. https://doi.org/10.7208/9780226613475-006 
  13. Damhorst, M. L. (1990). In search of a common thread: Classification of information communicated through dress. Clothing and Textiles Research Journal, 8(2), 1-12. https://doi.org/10.1177/0887302X9000800201 
  14. Duhan, D. F., Johnson, S. D., Wilcox, J. B., & Harrell, G. D. (1997). Influences on consumer use of word-of-mouth recommendation sources. Journal of the Academy of Marketing Science, 25(4), 283-295. https://doi.org/10.1177/0092070397254001 
  15. El Amri, D., & Akrout, H. (2020). Perceived design affordance of new products: Scale development and validation. Journal of Business Research, 121, 127-141. https://doi.org/10.1016/j.jbusres.2020.08.010 
  16. Graefe, A., Haim, M., Haarmann, B., & Brosius, H.-B. (2018). Readers' perception of computer-generated news: Credibility, expertise, and readability. Journalism, 19(5), 595-610. https://doi.org/10.1177/1464884916641269 
  17. Granulo, A., Fuchs, C., & Puntoni, S. (2020). Preference for human (vs. robotic) labor is stronger in symbolism consumption contexts. Journal of Consumer Psychology, 31(1), 72-80. https://doi.org/10.1002/jcpy.1181 
  18. Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157-169. https://doi.org/10.1016/j.ijinfomgt.2019. 03.008 
  19. Hartmans, A. (2017, February 19). Google helped build an app that designs you a personalized dress based on your lifestyle. Insider. https://www.businessinsider.com/google-data-dress-coded-couture-ivyrevel-photos-2017-2 
  20. Huang, M.-H., & Rust, T. R. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172. https://doi.org/10.1177/1094670517752459 
  21. Jang, S., Kim, H. Y., Lee, Y., Soel, J., Kim, S., & Lee, S. (2022). Deep learning for classification of high-end fashion brand sensibility. Journal of the Korean Society of Clothing and Textiles, 46(1), 165-181. https://doi.org/10.5850/JKSCT.2022.46.1.165 
  22. Jeon , Y., Jin , S., Shih, P. C., & Han , K. (2021, May 8-13). FashionQ: An AI-driven creativity support tool for facilitating ideation in fashion design [Conference session]. CHI Conference on Human Factors in Computing Systems, Yokohama, Japan. https://doi.org/10.1145/3411764.3445093 
  23. Jo, G.-E., & Kim, S.-I. (2019). A study on competencies of designer in fourth industrial revolution. Journal of the Korea Convergence Society, 10(2), 167-173. https://doi.org/10.15207/JKCS.2019.10.2.167 
  24. Jung, J.-R., & Kim, M.-H. (2019). A study on AI-based design process innovation in fashion industry. Journal of Communication Design, 67, 140-153. https://doi.org/10.25111/jcd.2019.67.11 
  25. Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://doi.org/10.1016/j.bushor.2018.08.004 
  26. Khoa, B. T. (2020). The antecedents of relationship marketing and customer loyalty: A case of the designed fashion product. Journal of Asian Finance Economics and Business, 7(2), 195-204. https://doi.org/10.13106/jafeb.2020.vol7.no2.195 
  27. Kim, H. Y., Choi, W., Lee, Y., & Jang, S. (2022). Current status of development and practice of artificial intelligence solutions for digital transformation of fashion manufacturers. Journal of Fashion Business, 26(2), 28-47. https://doi.org/10.12940/jfb.2022.26.2.28 
  28. Kouprie, M., & Visser, F. S. (2009). A framework for empathy in design: Stepping into and out of the user's life. Journal of Engineering Design, 20(5), 437-448. https://doi.org/10.1080/09544820902875033 
  29. Lee, E., & Sung, Y. (2020). "Hey Kakao!": A qualitative study on the interaction between AI devices and its consumer. Korean Journal of Consumer and Advertising Psychology, 21(1), 21-53. https://doi.org/10.21074/kjlcap.2020.21.1.21 
  30. Lee, J., & Lee, Y.-J. (2013). The perceptions of U.S. fashion industry professionals' on fashion design copyright law and creativity in fashion product development process. Journal of Korea Design Forum, 40, 323-334. https://doi.org/10.21326/ksdt.2013..40.030 
  31. Lee, J.-M., Jung, M., Lee, J., Kim, Y., & An, C. (2019). Consumer perception and adoption intention of artificial intelligent speaker: Non-users perspective. Journal of Consumer Studies, 30(2), 193-213. https://doi.org/10.35736/JCS.30.2.9 
  32. Lee, Y. H. (2018). A study on analog emotion expression for recovery of community value: Focused on my works (Publication No. KDMT1201864367) [Doctoral dissertation, Sungshin Women's University]. National Assembly Electronic Library. 
  33. Lennon, S. J., & Fairhurst, A. E. (1994). Categorization of the quality concept. Home Economics Research Journal, 22(3), 267-285. https://doi.org/10.1177/0046777494223001 
  34. Leung, E., Paolacci, G., & Puntoni, S. (2018). Man versus machine: Resisting automation in identity-based consumer behavior. Journal of Marketing Research, 55(6), 818-831. https://doi.org/10.1177/0022243718818423 
  35. Lim, H. C. (2013). Talking and comforting... Human touch is the best personnel management. Dong-A Business Review, 137, 96-100. https://dbr.donga.com/article/view/1201/article_no/5998/ac/magazine 
  36. Liu, L., Zhang, H., Ji, Y., & Wu, Q. M. J. (2019). Toward AI fashion design: An attribute-GAN model for clothing match. Neurocomputing, 341, 156-167. https://doi.org/10.1016/j.neucom.2019.03.011 
  37. Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to medical artificial intelligence. Journal of Consumer Research, 46(4), 629-650. https://doi.org/10.1093/jcr/ucz013 
  38. Luce, L. (2018). Artificial intelligence for fashion: How AI is revolutionizing the fashion industry. Apress. 
  39. Luger, E., & Sellen, A. (2016, May 7-12). "Like having a really bad PA": The Gulf between user expectation and experience of conversational agents [Paper presentation]. 2016 CHI Conference of Human Factors in Computing Systems, San Jose, CA, USA. https://doi.org/10.1145/2858036.2858288 
  40. Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937-947. https://doi.org/10.1287/mksc.2019.1192 
  41. Market.US. (2023). Generative AI in fashion market to expand at a CAGR of 36.9%, witnessing a surge in growth opportunities by providing unique experiences. GlobeNewsWire by notified. https://www.globenewswire.com/news-release/2023/04/03/2639328/0/en/Generative-AI-in-Fashion-Market-to-Expand-at-a-CAGR-of-36-9-Witnessing-a-Surge-in-Growth-Opportunities-by-Providing-Unique-Experiences.html 
  42. McClelland, D. C. (1973). Testing for competence rather than for "intelligence". American Psychologist, 28(1), 1-14. https://doi.org/10.1037/h0034092 
  43. Mende, M., Scott, M. L., Doorn, J. V., Grewal, D., & Shanks, I. (2019). Service robots rising: How humanoid robots influence service experiences and elicit compensatory consumer responses. Journal of Marketing Research, 56(4), 535-556. https://doi.org/10.1177/0022243718822827 
  44. Mohammadi, S. O., & Kalhor, A. (2021). Smart fashion: A review of AI applications in the fashion & apparel industry [Manuscript]. Cornell University. https://doi.org/10.48550/arXiv.2111.00905 
  45. Moreau, C. P., & Herd, K. B. (2010). To each his own? How comparisons with others influence consumers' evaluations of their self-designed products. Journal of Consumer Research, 36(5), 806-819. https://doi.org/10.1086/644612 
  46. Niinimaki, K., & Koskinen, I. (2011). I love this dress, it makes me feel beautiful! Empathic knowledge in sustainable design. The Design Journal, 14(2), 165-186. https://doi.org/10.2752/175630611X12984592779962 
  47. Oh, H. J. (1997). Conceptual framework and evaluation process of apparel quality [Unpublished doctoral dissertation]. Seoul National University. 
  48. Parasuraman, A., Berry, L. L., & Zeithaml, V. A. (1991). Refinement and reassessment of the SERVQUAL scale. Journal of Retailing, 67(4), 420-450. 
  49. Parisi, L. (2013). Contagious architecture: Computation, aesthetics, and space. The MIT Press. 
  50. Park, C. W., & Lessig, V. P. (1981). Familiarity and its impact on consumer decision biases and heuristics. Journal of Consumer Research, 8(2), 223-231.  https://doi.org/10.1086/208859
  51. Park, R. M. (2020, November 3). AI 디자이너가 만든 옷...1초 에 1만개 상품 뽑아낸다 [Clothes made by AI designer... produce 10,000 products in a second]. Herald Economy. http://biz.heraldcorp.com/view.php?ud=20201103000062 
  52. Patrick, V. M., & Peracchio, L. A. (2010). "Curating" the JCP special issue on aesthetics in consumer psychology: An introduction to the aesthetics issue. Journal of Consumer Psychology, 20(4), 393-397. https://doi.org/10.1016/j.jcps.2010.08.003 
  53. Prentice, C., & Nguyen, M. (2020). Engaging and retaining customers with AI and employee service. Journal of Retailing and Consumer Services, 56, 102186. https://doi.org/10.1016/j.jretconser.2020.102186 
  54. Qiao, C., Gang, F., & XueJie, C. (2019, March 15-17). Analysis on the development of AI clothing marketing [Proceeding]. 2019 4th International Conference on Social Sciences and Economic Development (ICSSED 2019). Wuhan, China. https://doi.org/10.2991/icssed-19.2019.7 
  55. Raviselvam, S., Holtta-Otto, K., & Wood, K. L. (2016, August 21-24). User extreme conditions to enhance designer empathy and creativity: Applications using visual impairment [Conference session]. CHI Conference on Human Factors in Computing Systems, NC, USA. https://doi.org/10.1115/DETC2016-59602
  56. Rezwana, J., & Maher, M. L. (2022). Designing creative AI partners with COFI: A framework for modeling interaction in Human-AI co-creative systems. ACM Transactions on Computer-Human Interaction. Advance online publication. https://doi.org/10.1145/3519026 
  57. Rietze, A. (2016, September 2). Project Muze: Fashion inspired by you, designed by code. Google. https://www.blog.google/around-the-globe/google-europe/project-muze-fashion-inspired-by-you/
  58. Sbai, O., Elhoseiny, M., Bordes, A., LeCun, Y., & Couprie, C. (2018). Design: Design inspiration from generative networks [Manuscript]. Cornell University. https://doi.org/10.48550/arXiv.1804.00921 
  59. Seo, K., Kim, J., & Ryu, H. (2014, February 12-14). An effect of designer's empathy level to the HCI design during co-design practices [Conference session]. HCI Korea 2014, Gangwondo, Korea. https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02374716 
  60. Shank, D. B., Graves, C., Gott, A., Gamez, P., & Rodriguez, S. (2019). Feeling our way to machine minds: People's emotions when perceiving mind in artificial intelligence. Computers in Human Behavior, 98, 256-266. https://doi.org/10.1016/j.chb.2019.04.001 
  61. Shin, J. H. (2014). Analysis of buyer utility map in creative products design (Publication No. G901:A-000) [Master's thesis, Sungkyunkwan University]. National Assembly Electronic Library. 
  62. Sim, J. S. (2018). Effects of knowledge and involvement of coffee consumers on information processing and selection attributes (Publication No. T14752357) [Doctoral dissertation, Kyonggi University]. National Library of Korea. 
  63. Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. Cambridge University Press. 
  64. Suh, M., Carroll, K., & Cassill, N. (2010). Critical review on smart apparel development. Journal of Textile and Apparel, Technology and Management, 6(4), 1-18. 
  65. Sun, Z.-L., Choi, T.-M., Au, K.-F., & Yu, Y. (2008). Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems, 46(1), 411-419. https://doi.org/10.1016/j.dss.2008.07.009 
  66. Surma-aho, A., Chen, C., Holtta-Otto, K., & Yang, M. (2019, August 18-21). Antecedents and outcomes of designer empathy: A retrospective interview study [Conference session]. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, CA, USA. https://doi.org/10.1115/DETC2019-97483
  67. Talke, K., & Heidenreich, S. (2014). How to overcome pro-change bias: Incorporating passive and active innovation resistance in innovation decision models. Journal of Product Innovation Management, 31(5), 894-907. https://doi.org/10.1111/jpim.12130 
  68. Xu, J., Zhang, X., Li, H., Yoo, C., & Pan, Y. (2023). Is everyone an artist? A study on user experience of AI-based painting system. Applied Sciences, 13(11), 6496. https://doi.org/10.3390/app13116496 
  69. YTN Science. (2020, February 24). AI와 디자이너의 협업 과정 [Cooperation with AI and designer]. https://science.ytn.co. kr/hotclip/view.php?s_mcd=1213&key=202001231120356362
  70. Yu, W., Zhang, H., He, X., Chen, X., Xiong, L., & Qin, Z. (2018, April 23-27). Aesthetic-based clothing recommendation [Paper presentation]. 2018 World Wide Web Conference, Lyon, France. https://doi.org/10.1145/3178876.3186146 
  71. Zhou, J., & George, J. M. (2001). When job dissatisfaction leads to creativity: Encouraging the expression of voice. Academy of Management Journal, 44(4), 682-696. https://doi.org/10.2307/3069410 
  72. Zhu, S., Fidler, S., Urtasun, R., Lin, D., & Loy, C. C. (2017, October 22-29). Be your own Prada: Fashion synthesis with structural coherence [Conference session]. IEEE International Conference on Computer Vision, Venice, Italy. https://doi.org/10.48550/arXiv.1710.07346