DOI QR코드

DOI QR Code

Effect of shear stresses on the deflection and optimal configuration of a rectangular FGM structure

  • Ayoub El Amrani (Laboratory of Mathematics, Modeling and Applied Physics, High Normal School, Sidi Mohamed Ben Abbellah University) ;
  • Hafid Mataich (Laboratory of Mathematics, Modeling and Applied Physics, High Normal School, Sidi Mohamed Ben Abbellah University) ;
  • Jaouad El-Mekkaoui (Laboratory of Technology and Innovations, High School of Technology, Sidi Mohamed Ben Abbellah University) ;
  • Bouchta El Amrani (Laboratory of Mathematics, Modeling and Applied Physics, High Normal School, Sidi Mohamed Ben Abbellah University)
  • 투고 : 2022.11.08
  • 심사 : 2023.09.04
  • 발행 : 2023.08.25

초록

This paper presents a static study of a rectangular functional graded material (FGM) plate, simply supported on its four edges, adopting a refined higher order theory that looks for, only,four unknowns,without taking into account any corrective factor of the deformation energy with the satisfaction of the zero shear stress conditions on the upper and lower faces of the plate. We will have determined the contribution of these stresses in the transverse deflection of the plate, as well as their effects on the axial stress within the interfaces between the layers(to avoid any problem of imperfections such as delamination) and on the top and bottom edges of the plate in order to take into account the fatigue phenomenon when choosing the distribution law of the properties used during the design of the plate. A numerical statement, in percentage, of the contribution of the shear effect is made in order to show the reliability of the adopted theory. We will also have demonstrated the need to add the shear effect when the aspect ratio is small or large. Code routines are programmed to obtain numerical results illustrating the validity of the model proposed in the theory compared to those available in the literature.

키워드

참고문헌

  1. Abdelbaki, B.M., Mohamed Sayed, M.E.A. and Al Kaisy, A.M. (2022), "A parametric study on the free vibration of a functionally graded material circular plate with non-uniform thickness resting on a variable pasternak foundation by differential quadrature method", Couple. Syst. Mech., 11(4), 357-371 https://doi.org/10.12989/csm.2022.11.4.357.
  2. Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
  3. Arslan, K. and Gunes, R. (2018), "Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under high velocity impact loads", Compos. Struct., 202, 304-312. https://doi.org/10.1016/j.compstruct.2018.01.087.
  4. Arya, H., Shimpi, R.P. and Naik, N.K. (2002), "A zigzag model for laminated composite beams", Compos. Struct., 56(1), 21-24. https://doi.org/10.1016/s0263-8223(01)00178-7.
  5. Bai, E. and Chen, A. (2012), "A symplectic eigenfunction expansion approach for free vibration solutions of rectangular kirchhoff plates", J. Vib. Control, 19(8), 1208-1215. https://doi.org/10.1177/1077546312448503.
  6. Bekki, H., Benferhat, R. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Couple. Syst. Mech., 10(1), 61-77. https://doi.org/10.12989/csm.2021.10.1.061.
  7. Belkhodja, Y., Belkhodja, M.E., Fekirini, H. and Ouinas, D. (2023), "New quasi-three-, and two-dimensional trigonometric-cubic monomial HSDT for thermal buckling and thermo-mechanical bending analyses of FGM symmetrical/non-symmetrical sandwich plates with hard/soft core", Compos. Struct., 304, 116402. https://doi.org/10.1016/j.compstruct.2022.116402.
  8. Benyoucef, S., Mechab, I., Tounsi, A., Fekrar, A., Ait Atmane, H. and Adda Bedia, E.A. (2010), "Bending of thick functionally graded plates resting on winkler-pasternak elastic foundations", Mech. Compos. Mater., 46(4), 425-434. https://doi.org/10.1007/s11029-010-9159-5.
  9. Bhaskar, D.P., Thakur, A.G., Sayyad, I.I. and Bhaskar, S.V. (2021), "Numerical analysis of thick isotropic and transversely isotropic plates in bending using Fe based new inverse shear deformation theory", Int. J. Auto. Mech. Eng., 18(3), 8882-8894. https://doi.org/10.15282/ijame.18.3.2021.04.0681.
  10. Bouhlali, M., Chikh, A., Bouremana, M., Kaci, A., Bourada, F., Belakhdar, K. and Tounsi, A. (2019), "Nonlinear thermoelastic analysis of FGM thick plates", Couple. Syst. Mech., 8(5), 439-457. https://doi.org/10.12989/csm.2019.8.5.439.
  11. Fazzolari, F.A. and Carrera, E. (2014), "Coupled thermoelastic effect in free vibration analysis of anisotropic multilayered plates and FGM plates by using a variable-kinematics ritz formulation", Eur. J. Mech.-A/Solid., 44, 157-174. https://doi.org/10.1016/j.euromechsol.2013.10.011.
  12. Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2020). "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
  13. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333.
  14. Jin, Z.H. and Batra, R.C. (1996), "Stresses intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock", J. Therm. Stress., 19, 317-339. https://doi.org/10.1080/01495739608946178.
  15. Kablia, A., Benferhat, R. and Tahar, H.D. (2022), "Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modelling", Couple. Syst. Mech., 11(5), 389-409. https://doi.org/10.12989/csm.2022.11.5.389.
  16. Karakoti, A., Pandey, S. and Kar, V.R. (2022), "Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment", Thin Wall. Struct., 173, 108985. https://doi.org/10.1016/j.tws.2022.108985.
  17. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/s0020-7683(02)00647-9.
  18. Kumar, Y. and Lal, R. (2012), "Vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on winkler foundation", Meccanica, 47(4), 893-915. https://doi.org/10.1007/s11012-011-9459-4.
  19. Liang, C. and Wang, Y.Q. (2020), "A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation", Compos. Struct., 247, 112478. https://doi.org/10.1016/j.compstruct.2020.112478.
  20. Liu, B.L., Li, S. and Li, Y.S. (2023), "Bending of FGM sandwich plates with tunable auxetic core using DQM", Eur. J. Mech. A Solid., 97, 104838. https://doi.org/10.1016/j.euromechsol.2022.104838.
  21. Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer International Publishing AG, 6330 Cham, Switzerland.
  22. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
  23. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  24. Najafizadeh, M.M. and Hedayati, B. (2004), "Refined theory for thermoelastic stability of functionally graded circular plates", J. Therm. Stress., 27(9), 857-880. https://doi.org/10.1080/01495730490486532.
  25. Nguyen-Xuan, H., Tran, L.V., Nguyen-Thoi, T. and Vu-Do, H.C. (2011), "Analysis of functionally graded plates using an edge-based smoothed finite element method", Compos. Struct., 93(11), 3019-3039. https://doi.org/10.1016/j.compstruct.2011.04.028.
  26. Nguyen-Xuan, H., Tran, L.V., Thai, C.H. and Nguyen-Thoi, T. (2012), "Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing", Thin Wall. Struct., 54, 1-18. https://doi.org/10.1016/j.tws.2012.01.013. 
  27. Rabboh, S.A. (2013). "The effect of functionally graded materials into the sandwich beam dynamic performance", Mater. Sci. Appl., 4(11), 751. https://doi.org/10.4236/msa.2013.411095.
  28. Rao, M.K. and Desai, Y.M. (2004), "Analytical solutions for vibrations of laminated and sandwich plates using mixed theory", Compos. Struct., 63(3-4), 361-373. https://doi.org/10.1016/s0263-8223(03)00185-5.
  29. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745. https://doi.org/10.1115/1.3167719.
  30. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8.
  31. Rizov, V.I. (2021), "Delamination analysis of multi-layered beams exhibiting creep under torsion", Couple. Syst. Mech., 10(4), 317-331. https://doi.org/10.12989/csm.2021.10.4.317.
  32. Sadeghi, Z. (2021), "Dynamic response analysis of a foam based nano scale plate based on finite strip method", Couple. Syst. Mech., 10(4) 281-298. https://doi.org/10.12989/csm.2021.10.4.281.
  33. Sahoo, B., Sharma, N., Sahoo, B., Ramteke, P.M., Panda, S.K. and Mahmoud, S.R. (2022), "Nonlinear vibration analysis of FGM sandwich structure under thermal loadings", Struct., 44, 1392-1402. https://doi.org/10.1016/j.istruc.2022.08.081.
  34. Singh, S.J. and Harsha, S.P. (2020). "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach", Thin Wall. Struct., 150, 106668. https://doi.org/10.1016/j.tws.2020.106668.
  35. Soelarso, S., Antaluca, E., Batoz, J.L. and Lamarque, F. (2021), "On the finite element modeling of a particular shallow foundation system for soft soil", Couple. Syst. Mech., 10(3), 247-261. https://doi.org/10.12989/csm.2021.10.3.247.
  36. Swaminathan, K. and Patil, S.S. (2008), "Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of antisymmetric angle-ply plates", Compos. Struct., 82(2), 209-216. https://doi.org/10.1016/j.compstruct.2007.01.001.
  37. Taczala, M., Buczkowski, R. and Kleiber, M. (2022), "Analysis of FGM plates based on physical neutral surface using general third-order plate theory", Compos. Struct., 301, 116218. https://doi.org/10.1016/j.compstruct.2022.116218.
  38. Thai, H.T. and Kim, S.E. (2012), "Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory", Appl. Math. Model., 36(8), 3870-3882. https://doi.org/10.1016/j.apm.2011.11.003.
  39. Youcef, A., Bourada, M., Draiche, K., Boucham, B., Bourada, F. and Addou, F.Y. (2020), "Bending behaviour of FGM plates via a simple quasi 3D and 2D shear deformation theories", Couple. Syst. Mech., 9(3), 237-264. https://doi.org/10.12989/csm.2020.9.3.237.
  40. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  41. Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11-12), 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026.