참고문헌
- Abdelbaki, B.M., Mohamed Sayed, M.E.A. and Al Kaisy, A.M. (2022), "A parametric study on the free vibration of a functionally graded material circular plate with non-uniform thickness resting on a variable pasternak foundation by differential quadrature method", Couple. Syst. Mech., 11(4), 357-371 https://doi.org/10.12989/csm.2022.11.4.357.
- Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
- Arslan, K. and Gunes, R. (2018), "Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under high velocity impact loads", Compos. Struct., 202, 304-312. https://doi.org/10.1016/j.compstruct.2018.01.087.
- Arya, H., Shimpi, R.P. and Naik, N.K. (2002), "A zigzag model for laminated composite beams", Compos. Struct., 56(1), 21-24. https://doi.org/10.1016/s0263-8223(01)00178-7.
- Bai, E. and Chen, A. (2012), "A symplectic eigenfunction expansion approach for free vibration solutions of rectangular kirchhoff plates", J. Vib. Control, 19(8), 1208-1215. https://doi.org/10.1177/1077546312448503.
- Bekki, H., Benferhat, R. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Couple. Syst. Mech., 10(1), 61-77. https://doi.org/10.12989/csm.2021.10.1.061.
- Belkhodja, Y., Belkhodja, M.E., Fekirini, H. and Ouinas, D. (2023), "New quasi-three-, and two-dimensional trigonometric-cubic monomial HSDT for thermal buckling and thermo-mechanical bending analyses of FGM symmetrical/non-symmetrical sandwich plates with hard/soft core", Compos. Struct., 304, 116402. https://doi.org/10.1016/j.compstruct.2022.116402.
- Benyoucef, S., Mechab, I., Tounsi, A., Fekrar, A., Ait Atmane, H. and Adda Bedia, E.A. (2010), "Bending of thick functionally graded plates resting on winkler-pasternak elastic foundations", Mech. Compos. Mater., 46(4), 425-434. https://doi.org/10.1007/s11029-010-9159-5.
- Bhaskar, D.P., Thakur, A.G., Sayyad, I.I. and Bhaskar, S.V. (2021), "Numerical analysis of thick isotropic and transversely isotropic plates in bending using Fe based new inverse shear deformation theory", Int. J. Auto. Mech. Eng., 18(3), 8882-8894. https://doi.org/10.15282/ijame.18.3.2021.04.0681.
- Bouhlali, M., Chikh, A., Bouremana, M., Kaci, A., Bourada, F., Belakhdar, K. and Tounsi, A. (2019), "Nonlinear thermoelastic analysis of FGM thick plates", Couple. Syst. Mech., 8(5), 439-457. https://doi.org/10.12989/csm.2019.8.5.439.
- Fazzolari, F.A. and Carrera, E. (2014), "Coupled thermoelastic effect in free vibration analysis of anisotropic multilayered plates and FGM plates by using a variable-kinematics ritz formulation", Eur. J. Mech.-A/Solid., 44, 157-174. https://doi.org/10.1016/j.euromechsol.2013.10.011.
- Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2020). "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
- Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333.
- Jin, Z.H. and Batra, R.C. (1996), "Stresses intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock", J. Therm. Stress., 19, 317-339. https://doi.org/10.1080/01495739608946178.
- Kablia, A., Benferhat, R. and Tahar, H.D. (2022), "Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modelling", Couple. Syst. Mech., 11(5), 389-409. https://doi.org/10.12989/csm.2022.11.5.389.
- Karakoti, A., Pandey, S. and Kar, V.R. (2022), "Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment", Thin Wall. Struct., 173, 108985. https://doi.org/10.1016/j.tws.2022.108985.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/s0020-7683(02)00647-9.
- Kumar, Y. and Lal, R. (2012), "Vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on winkler foundation", Meccanica, 47(4), 893-915. https://doi.org/10.1007/s11012-011-9459-4.
- Liang, C. and Wang, Y.Q. (2020), "A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation", Compos. Struct., 247, 112478. https://doi.org/10.1016/j.compstruct.2020.112478.
- Liu, B.L., Li, S. and Li, Y.S. (2023), "Bending of FGM sandwich plates with tunable auxetic core using DQM", Eur. J. Mech. A Solid., 97, 104838. https://doi.org/10.1016/j.euromechsol.2022.104838.
- Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer International Publishing AG, 6330 Cham, Switzerland.
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Najafizadeh, M.M. and Hedayati, B. (2004), "Refined theory for thermoelastic stability of functionally graded circular plates", J. Therm. Stress., 27(9), 857-880. https://doi.org/10.1080/01495730490486532.
- Nguyen-Xuan, H., Tran, L.V., Nguyen-Thoi, T. and Vu-Do, H.C. (2011), "Analysis of functionally graded plates using an edge-based smoothed finite element method", Compos. Struct., 93(11), 3019-3039. https://doi.org/10.1016/j.compstruct.2011.04.028.
- Nguyen-Xuan, H., Tran, L.V., Thai, C.H. and Nguyen-Thoi, T. (2012), "Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing", Thin Wall. Struct., 54, 1-18. https://doi.org/10.1016/j.tws.2012.01.013.
- Rabboh, S.A. (2013). "The effect of functionally graded materials into the sandwich beam dynamic performance", Mater. Sci. Appl., 4(11), 751. https://doi.org/10.4236/msa.2013.411095.
- Rao, M.K. and Desai, Y.M. (2004), "Analytical solutions for vibrations of laminated and sandwich plates using mixed theory", Compos. Struct., 63(3-4), 361-373. https://doi.org/10.1016/s0263-8223(03)00185-5.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8.
- Rizov, V.I. (2021), "Delamination analysis of multi-layered beams exhibiting creep under torsion", Couple. Syst. Mech., 10(4), 317-331. https://doi.org/10.12989/csm.2021.10.4.317.
- Sadeghi, Z. (2021), "Dynamic response analysis of a foam based nano scale plate based on finite strip method", Couple. Syst. Mech., 10(4) 281-298. https://doi.org/10.12989/csm.2021.10.4.281.
- Sahoo, B., Sharma, N., Sahoo, B., Ramteke, P.M., Panda, S.K. and Mahmoud, S.R. (2022), "Nonlinear vibration analysis of FGM sandwich structure under thermal loadings", Struct., 44, 1392-1402. https://doi.org/10.1016/j.istruc.2022.08.081.
- Singh, S.J. and Harsha, S.P. (2020). "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach", Thin Wall. Struct., 150, 106668. https://doi.org/10.1016/j.tws.2020.106668.
- Soelarso, S., Antaluca, E., Batoz, J.L. and Lamarque, F. (2021), "On the finite element modeling of a particular shallow foundation system for soft soil", Couple. Syst. Mech., 10(3), 247-261. https://doi.org/10.12989/csm.2021.10.3.247.
- Swaminathan, K. and Patil, S.S. (2008), "Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of antisymmetric angle-ply plates", Compos. Struct., 82(2), 209-216. https://doi.org/10.1016/j.compstruct.2007.01.001.
- Taczala, M., Buczkowski, R. and Kleiber, M. (2022), "Analysis of FGM plates based on physical neutral surface using general third-order plate theory", Compos. Struct., 301, 116218. https://doi.org/10.1016/j.compstruct.2022.116218.
- Thai, H.T. and Kim, S.E. (2012), "Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory", Appl. Math. Model., 36(8), 3870-3882. https://doi.org/10.1016/j.apm.2011.11.003.
- Youcef, A., Bourada, M., Draiche, K., Boucham, B., Bourada, F. and Addou, F.Y. (2020), "Bending behaviour of FGM plates via a simple quasi 3D and 2D shear deformation theories", Couple. Syst. Mech., 9(3), 237-264. https://doi.org/10.12989/csm.2020.9.3.237.
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
- Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11-12), 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026.