References
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfectionsˮ, Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D., Ersoy, H., Akgoz, B. and Civalek, O . (2021), "Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz methodˮ, Math., 9(9), 1048. https://doi.org/10.3390/math9091048.
- Amara, K., Bouazza, M. and Fouad, B. (2016), "Postbuckling analysis of functionally graded beams using nonlinear modelˮ, Periodica Polytechnica Mech. Eng., 60(2), 121-128. https://doi.org/10.3311/PPme.8854.
- Atmane, H.A., Bedia, E.A.A., Bouazza, M., Tounsi, A. and Fekrar, A. (2016). "On the thermal buckling of simply supported rectangular plates made of a sigmoid functionally graded Al/Al2O3 based material", Mech. Solid., 51, 177-187. https://doi.org/10.3103/S0025654416020059.
- Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347.
- Bouazza, M. and Zenkour, A.M. (2020), "Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theoryˮ, Arch. Appl. Mech., 90, 1755-1769. https://doi.org/10.1007/s00419-020-01694-3.
- Bouazza, M. and Benseddiq, N. (2015), "Analytical modeling for the thermoelastic buckling behavior of functionally graded rectangular plates using hyperbolic shear deformation theory under thermal loadings", Multidisc. Model. Mater. Struct., 11(4), 558-578. https://doi.org/10.1108/MMMS-02-2015-0008.
- Bouazza, M. and Zenkour, A.M. (2020), "Hygro-thermo-mechanical buckling of laminated beam using hyperbolic refined shear deformation theory", Compos. Struct., 252, 112689. https://doi.org/10.1016/j.compstruct.2020.112689.
- Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda-Bedia, E. (2014), "Hygrothermal effects on the postbuckling response of composite beam", Am. J. Mater. Res., 1(2), 35-43. http://www.aascit.org/journal/ajmr. https://doi.org/10.18488/journal.79/2015.2.1/79.1.1.14
- Bouazza, M., Antar, K., Amara, K. and Benyoucef, S. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.
- Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2019), "Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method", Earthq. Struct., 17(3), 257-270. https://doi.org/10.12989/eas.2019.17.3.257.
- Bouazza, M., Benseddiq, N. and Zenkour, A.M. (2019), "Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory", J. Therm. Stress., 42(3), 332-340. https://doi.org/10.1080/01495739.2018.1461042.
- Bouazza, M., Zenkour, A.M. and Benseddiq, N. (2018), "Effect of material composition on bending analysis of FG plates via a two-variable refined hyperbolic theory", Arch. Mech., 70(2), 1-23.
- Butcher, R.J., Rousseau, C.E. and Tippur, H.V. (1999), "A functionally graded particulate composite: Measurements and failure analysisˮ, Acta Mater., 47(2), 259-268. https://doi.org/10.1016/S1359-6454(98)00305-X.
- Civalek, O., Akbas, S.D., Akgoz, B. and Dastjerdi, S. (2021), "Forced vibration analysis of composite beams reinforced by carbon nanotubesˮ, Nanomater., 11, 571. https://doi.org/10.3390/nano 11030571.
- Dastjerdi, S., Akgoz, B., Civalek, O ., Malikan, M. and Eremeyev, V.A. (2020), "On the non-linear dynamics of torus-shaped and cylindrical shell structuresˮ, Int. J. Eng. Sci., 156, 103371. https://doi.org/10.1016/j.ijengsci.2020.103371.
- Derbale, A., Bouazza, M. and Benseddiq, N. (2021), "Analysis of the mechanical and thermal buckling of laminated beams by new refined shear deformation theoryˮ, Iran. J. Sci. Technol. Tran. Civil Eng., 45, 89-98. https://doi.org/10.1007/s40996-020-00417-6.
- Dolgov, N.A. (2005), "Determination of stresses in a two-layer coating", Strength Mater., 37(2), 422-431. https://doi.org/10.1007/s11223-005-0053-7.
- Dolgov, N.A. (2016), "Analytical methods to determine the stress state in the substrate-coating system under mechanical loads", Strength Mater., 48(1), 658-667. https://doi.org/10.1007/s11223-016-9809-5.
- Donaldson, S.L. (1988), "Mode III interlaminar fracture characterization of composite materials", Compos. Sci. Technol., 32, 225-249. https://doi.org/10.1016/0266-3538(88)90022-X.
- Donaldson, S.L. and Mall, S. (1989), "Delamination growth in graphite/epoxy composite subjected to cyclic mode III loading", J. Reinf. Plast. Compos., 8, 91-103. https://doi.org/10.1177/073168448900800106.
- El-Galy, I.M., Saleh, B.I. and Ahmed, M.H. (2019), "Functionally graded materials classifications and development trends from industrial point of viewˮ, SN Appl. Sci., 1, 1378. https://doi.org/10.1007/s42452-019-1413-4.
- Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.
- Ellali, M., Bouazza, M. and Amara, K. (2022), "Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theoryˮ, Arch. Appl. Mech., 92, 657-665. https://doi.org/10.1007/s00419-021-02094-x.
- Ellali, M., Bouazza, M. and Zenkour, A.M. (2022), "Impact of micromechanical approaches on wave propagation of FG plates via indeterminate integral variables with a hyperbolic secant shear model", Int. J. Comput. Meth., 19(9), 2250019. https://doi.org/10.1142/S0219876222500190.
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshellsˮ, Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
- Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of doublecoupled metal foam plate system with uniform and non-uniform porositiesˮ, Couple. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
- Gasik, M.M. (2010), "Functionally graded materials: bulk processing techniquesˮ, Int. J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257.
- Han, X., Xu, Y.G. and Lam, K.Y. (2001), "Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network", Compos. Sci. Technol., 61(10), 1401-1411. https://doi.org/10.1016/S0266-3538(01)00033-1.
- Hedia, H.S., Aldousari, S.M., Abdellatif, A.K. and Fouda, N.A. (2014), "New design of cemented stem using functionally graded materials (FGM)ˮ, Biomed. Mater. Eng., 24(3), 1575-1588. https://doi.org/10.3233/BME-140962.
- Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japanˮ, Mater. Sci. Forum, 308-311(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509.
- Lukash, P.A. (1978), Fundamentals of Non-linear Structural Mechanics, Stroiizdat.
- Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer.
- Markworth, A.J., Ramesh, K.S. and Parks, Jr. W.P. (1995), "Review: modeling studies applied to functionally graded materialsˮ, J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston.
- Nemat-Alla, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded materialˮ, Mater. Sci. Appl., 2(5), 1708-1718. https://doi.org/10.4236/msa.2011.212228.
- Rizov, V. (2020), "Influence of the viscoelastic material behaviour on the delamination in multilayered beamˮ, Procedia Struct. Integr., 25, 88-100. https://doi.org/10.1016/j.prostr.2020.04.013.
- Rizov, V.I. (2020), "Analysis of two lengthwise cracks in a viscoelastic inhomogeneous beam structureˮ, Eng. Trans., 68, 397-415. https://doi.org/10.24423/EngTrans.1214.20201125.
- Rizov, V.I. (2021), "Delamination analysis of multilayered beams exhibiting creep under torsionˮ, Couple. Syst. Mech., 10, 317-331. https://doi.org/10.12989/csm.2021.10.4.317.
- Rizov, V.I. (2022), "Effects of periodic loading on longitudinal fracture in viscoelastic functionally graded beam structuresˮ, J. Appl. Comput. Mech., 8(1), 370-378. https://doi.org/10.22055/JACM.2021.37953.3141.
- Rizov, V.I. and Altenbach, H. (2019), "Application of the classical beam theory for studying lengthwise fracture of functionally graded beamsˮ, Technische Mechanik, 39(2), 229-240. https://doi.org/10.24352/UB.OVGU-2019-021.
- Rizov, V.I. and Altenbach, H. (2022), "Multilayered frame structure subjected to non-linear creep: A delamination analysisˮ, Couple. Syst. Mech., 11(3), 217-231. https://doi.org/10.12989/csm.2022.11.3.217217.
- Saiyathibrahim, A., Subramaniyan, R. and Dhanapl, P. (2016), "Centrefugally cast functionally graded materials-Reviewˮ, International Conference on Systems, Science, Control, Communications, Engineering and Technology, 68-73.
- Shrikantha Rao, S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overviewˮ, Procedia Mater. Sci., 5(1), 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
- Toudehdehghan, J., Lim, W., Foo1, K.E., Ma'arof, M.I.N. and Mathews, J. (2017), "A brief review of functionally graded materialsˮ, MATEC Web of Conferences, 131, 03010. https://doi.org/10.1051/matecconf/201713103010UTP-UMP.
- Wu, X.L., Jiang, P., Chen, L., Zhang, J.F., Yuan, F.P. and Zhu, Y.T. (2014), "Synergetic strengthening by gradient structureˮ, Mater. Res. Lett., 2(1), 185-191. https://doi.org/10.1080/21663831.2014.935821.