DOI QR코드

DOI QR Code

Delamination of non-linear viscoelastic beams under bending in the plane of layers

  • Victor I. Rizov (Department of Technical Mechanics, University of Architecture, Civil Engineering and Geodesy)
  • Received : 2023.05.02
  • Accepted : 2023.06.16
  • Published : 2023.08.25

Abstract

This paper deals with delamination analysis of non-linear viscoelastic multilayered beam subjected to bending in the plane of the layers. For this purpose, first, a non-linear viscoelastic model is presented. In order to take into account the non-linear viscoelastic behaviour, a non-linear spring and a non-linear dashpot are assembled in series with a linear spring connected in parallel to a linear dashpot. The behaviours of the non-linear spring and dashpot are described by applying non-linear stress-strain and stress-rate of strain relationships, respectively. The constitutive law of the model is derived. Due to the non-linear spring and dashpot, the constitutive law is non-linear. This law is used for describing the time-dependent mechanical behaviour of the beam under consideration. The material properties involved in the constitutive law vary along the beam length due to the continuous material inhomogeneity of the layers. Solution of the strain energy release rate for the delamination is obtained by analyzing the balance of the energy with considering of the non-linear viscoelastic behaviour. The strain energy release rate is found also by using the complementary strain energy for verification. A parametric study is carried-out by using the solution obtained. The solutions derived and the results obtained help to understand the time-dependent delamination of non-linear viscoelastic beams under loading in the plane of layers.

Keywords

References

  1. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfectionsˮ, Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  2. Akbas, S.D., Ersoy, H., Akgoz, B. and Civalek, O . (2021), "Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz methodˮ, Math., 9(9), 1048. https://doi.org/10.3390/math9091048.
  3. Amara, K., Bouazza, M. and Fouad, B. (2016), "Postbuckling analysis of functionally graded beams using nonlinear modelˮ, Periodica Polytechnica Mech. Eng., 60(2), 121-128. https://doi.org/10.3311/PPme.8854.
  4. Atmane, H.A., Bedia, E.A.A., Bouazza, M., Tounsi, A. and Fekrar, A. (2016). "On the thermal buckling of simply supported rectangular plates made of a sigmoid functionally graded Al/Al2O3 based material", Mech. Solid., 51, 177-187. https://doi.org/10.3103/S0025654416020059.
  5. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347.
  6. Bouazza, M. and Zenkour, A.M. (2020), "Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theoryˮ, Arch. Appl. Mech., 90, 1755-1769. https://doi.org/10.1007/s00419-020-01694-3.
  7. Bouazza, M. and Benseddiq, N. (2015), "Analytical modeling for the thermoelastic buckling behavior of functionally graded rectangular plates using hyperbolic shear deformation theory under thermal loadings", Multidisc. Model. Mater. Struct., 11(4), 558-578. https://doi.org/10.1108/MMMS-02-2015-0008.
  8. Bouazza, M. and Zenkour, A.M. (2020), "Hygro-thermo-mechanical buckling of laminated beam using hyperbolic refined shear deformation theory", Compos. Struct., 252, 112689. https://doi.org/10.1016/j.compstruct.2020.112689.
  9. Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda-Bedia, E. (2014), "Hygrothermal effects on the postbuckling response of composite beam", Am. J. Mater. Res., 1(2), 35-43. http://www.aascit.org/journal/ajmr. https://doi.org/10.18488/journal.79/2015.2.1/79.1.1.14
  10. Bouazza, M., Antar, K., Amara, K. and Benyoucef, S. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.
  11. Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2019), "Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method", Earthq. Struct., 17(3), 257-270. https://doi.org/10.12989/eas.2019.17.3.257.
  12. Bouazza, M., Benseddiq, N. and Zenkour, A.M. (2019), "Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory", J. Therm. Stress., 42(3), 332-340. https://doi.org/10.1080/01495739.2018.1461042.
  13. Bouazza, M., Zenkour, A.M. and Benseddiq, N. (2018), "Effect of material composition on bending analysis of FG plates via a two-variable refined hyperbolic theory", Arch. Mech., 70(2), 1-23.
  14. Butcher, R.J., Rousseau, C.E. and Tippur, H.V. (1999), "A functionally graded particulate composite: Measurements and failure analysisˮ, Acta Mater., 47(2), 259-268. https://doi.org/10.1016/S1359-6454(98)00305-X.
  15. Civalek, O., Akbas, S.D., Akgoz, B. and Dastjerdi, S. (2021), "Forced vibration analysis of composite beams reinforced by carbon nanotubesˮ, Nanomater., 11, 571. https://doi.org/10.3390/nano 11030571.
  16. Dastjerdi, S., Akgoz, B., Civalek, O ., Malikan, M. and Eremeyev, V.A. (2020), "On the non-linear dynamics of torus-shaped and cylindrical shell structuresˮ, Int. J. Eng. Sci., 156, 103371. https://doi.org/10.1016/j.ijengsci.2020.103371.
  17. Derbale, A., Bouazza, M. and Benseddiq, N. (2021), "Analysis of the mechanical and thermal buckling of laminated beams by new refined shear deformation theoryˮ, Iran. J. Sci. Technol. Tran. Civil Eng., 45, 89-98. https://doi.org/10.1007/s40996-020-00417-6.
  18. Dolgov, N.A. (2005), "Determination of stresses in a two-layer coating", Strength Mater., 37(2), 422-431. https://doi.org/10.1007/s11223-005-0053-7.
  19. Dolgov, N.A. (2016), "Analytical methods to determine the stress state in the substrate-coating system under mechanical loads", Strength Mater., 48(1), 658-667. https://doi.org/10.1007/s11223-016-9809-5.
  20. Donaldson, S.L. (1988), "Mode III interlaminar fracture characterization of composite materials", Compos. Sci. Technol., 32, 225-249. https://doi.org/10.1016/0266-3538(88)90022-X.
  21. Donaldson, S.L. and Mall, S. (1989), "Delamination growth in graphite/epoxy composite subjected to cyclic mode III loading", J. Reinf. Plast. Compos., 8, 91-103. https://doi.org/10.1177/073168448900800106.
  22. El-Galy, I.M., Saleh, B.I. and Ahmed, M.H. (2019), "Functionally graded materials classifications and development trends from industrial point of viewˮ, SN Appl. Sci., 1, 1378. https://doi.org/10.1007/s42452-019-1413-4.
  23. Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.
  24. Ellali, M., Bouazza, M. and Amara, K. (2022), "Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theoryˮ, Arch. Appl. Mech., 92, 657-665. https://doi.org/10.1007/s00419-021-02094-x.
  25. Ellali, M., Bouazza, M. and Zenkour, A.M. (2022), "Impact of micromechanical approaches on wave propagation of FG plates via indeterminate integral variables with a hyperbolic secant shear model", Int. J. Comput. Meth., 19(9), 2250019. https://doi.org/10.1142/S0219876222500190.
  26. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshellsˮ, Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  27. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of doublecoupled metal foam plate system with uniform and non-uniform porositiesˮ, Couple. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  28. Gasik, M.M. (2010), "Functionally graded materials: bulk processing techniquesˮ, Int. J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257.
  29. Han, X., Xu, Y.G. and Lam, K.Y. (2001), "Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network", Compos. Sci. Technol., 61(10), 1401-1411. https://doi.org/10.1016/S0266-3538(01)00033-1.
  30. Hedia, H.S., Aldousari, S.M., Abdellatif, A.K. and Fouda, N.A. (2014), "New design of cemented stem using functionally graded materials (FGM)ˮ, Biomed. Mater. Eng., 24(3), 1575-1588. https://doi.org/10.3233/BME-140962.
  31. Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japanˮ, Mater. Sci. Forum, 308-311(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509.
  32. Lukash, P.A. (1978), Fundamentals of Non-linear Structural Mechanics, Stroiizdat.
  33. Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer.
  34. Markworth, A.J., Ramesh, K.S. and Parks, Jr. W.P. (1995), "Review: modeling studies applied to functionally graded materialsˮ, J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560.
  35. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston.
  36. Nemat-Alla, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded materialˮ, Mater. Sci. Appl., 2(5), 1708-1718. https://doi.org/10.4236/msa.2011.212228.
  37. Rizov, V. (2020), "Influence of the viscoelastic material behaviour on the delamination in multilayered beamˮ, Procedia Struct. Integr., 25, 88-100. https://doi.org/10.1016/j.prostr.2020.04.013.
  38. Rizov, V.I. (2020), "Analysis of two lengthwise cracks in a viscoelastic inhomogeneous beam structureˮ, Eng. Trans., 68, 397-415. https://doi.org/10.24423/EngTrans.1214.20201125.
  39. Rizov, V.I. (2021), "Delamination analysis of multilayered beams exhibiting creep under torsionˮ, Couple. Syst. Mech., 10, 317-331. https://doi.org/10.12989/csm.2021.10.4.317.
  40. Rizov, V.I. (2022), "Effects of periodic loading on longitudinal fracture in viscoelastic functionally graded beam structuresˮ, J. Appl. Comput. Mech., 8(1), 370-378. https://doi.org/10.22055/JACM.2021.37953.3141.
  41. Rizov, V.I. and Altenbach, H. (2019), "Application of the classical beam theory for studying lengthwise fracture of functionally graded beamsˮ, Technische Mechanik, 39(2), 229-240. https://doi.org/10.24352/UB.OVGU-2019-021.
  42. Rizov, V.I. and Altenbach, H. (2022), "Multilayered frame structure subjected to non-linear creep: A delamination analysisˮ, Couple. Syst. Mech., 11(3), 217-231. https://doi.org/10.12989/csm.2022.11.3.217217.
  43. Saiyathibrahim, A., Subramaniyan, R. and Dhanapl, P. (2016), "Centrefugally cast functionally graded materials-Reviewˮ, International Conference on Systems, Science, Control, Communications, Engineering and Technology, 68-73.
  44. Shrikantha Rao, S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overviewˮ, Procedia Mater. Sci., 5(1), 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
  45. Toudehdehghan, J., Lim, W., Foo1, K.E., Ma'arof, M.I.N. and Mathews, J. (2017), "A brief review of functionally graded materialsˮ, MATEC Web of Conferences, 131, 03010. https://doi.org/10.1051/matecconf/201713103010UTP-UMP.
  46. Wu, X.L., Jiang, P., Chen, L., Zhang, J.F., Yuan, F.P. and Zhu, Y.T. (2014), "Synergetic strengthening by gradient structureˮ, Mater. Res. Lett., 2(1), 185-191. https://doi.org/10.1080/21663831.2014.935821.