Acknowledgement
This research was supported by and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1003776).
References
- Amirpour, M., Das, R. and Flores, E.I.S. (2016), "Analytical solutions for elastic deformation of functionally graded thick plates with in-plane stiffness variation using higher order shear deformation theory", Compos. Part B: Eng., 94, 109-121. https://doi.org/10.1016/j.compositesb.2016.03.040.
- Arnold, D. and R. Falk., (1989), Analytical and Computational Models for Shells, American Society of Mechanical Engineers, New York, New York, United States.
- Bacciocchi, M., Eisenberger, M., Fantuzzi, N., Tornabene, F. and Viola, E. (2016), "Vibration analysis of variable thickness plates and shells by the Generalized Differential Quadrature method", Compos. Struct., 165, 218-237. https://doi.org/10.1016/j.compstruct.2015.12.004.
- Banh, T.T. and Lee, D. (2019), "Topology optimization of multidirectional variable thickness thin plate with multiple materials", Struct. Multidiscipl. Optimiz., 59, 1503-1520. https://doi.org/10.1007/s00158-018-2143-8.
- Banh, T.T, Nguyen, Q.X., Herrmann, M., Filippou, F.C. and Lee, D.K. (2020), "Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation", Steel Compos. Struct., 35(1), 129-145. http://dx.doi.org/10.12989/scs.2020.35.1.129.
- Banh, T.T., Lieu X.Q., Lee J., Kang J. and Lee, D. (2023a), "A robust dynamic unified multi-material topology optimization method for functionally graded structures", Struct. Multidiscipl. Optimiz., 66. http://doi.org/10.1007/s00158-023-03501-3.
- Banh, T.T., Lieu X.Q., Kang J., Ju Y., Shin S. and Lee, D. (2023b), "A novel robust stress-based multimaterial topology optimization model for structural stability framework using refined adaptive continuation method", Eng. Comput., http://doi.org/10.1007/s00366-023-01829-4.
- Bagherinejad, M.H. and Haghollahi, A. (2018), "Topology optimization of steel plate shear walls in the moment frames", Steel Compos. Struct., 29(6), 771-783. http://dx.doi.org/10.12989/scs.2018.29.6.771.
- Bathe, K.J. and Dvorkin, E. (1985), "A four node plate bending element based on Mindlin-Reissner plate theory and mixed interpolation", Int. J. Numer. Meth. Eng., 21(2), 367-383. https://doi.org/10.1002/nme.1620210213.
- Belblidia, F., Lee, J.E.B., Rechak, S. and Hinton, E. (2001), "Topology optimization of plate structures using a single- or three-layered artificial material model", Adv. Eng. Softw., 32(2), 159-168. https://doi.org/10.1016/S0045-7949(00)00141-3.
- Bendsoe, M.P. and Kikuchi, N., (1988), "Generating optimal topologies in structural design using a homogenization method", Struct. Multidiscipl. Optimiz., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
- Chen, B. and Tong, L. (2004), "Sensitivity analysis of heat conduction for functionally graded materials", Mater. Des., 25(8), 663-672. https://doi.org/10.1016/j.matdes.2004.03.007.
- Chen, B. and Tong, L. (2005), "Thermomechanically coupled sensitivity analysis and design optimization of functionally graded materials", Comput. Meth. Appl. Mech. Eng., 194(18-20), 1891-1911. https://doi.org/10.1016/j.cma.2004.07.005.
- Cho, J.R. and Ha, D.Y. (2002), "Volume fraction optimization for minimizing thermal stress in Ni-Al2O3 functionally graded materials", Mater. Sci. Eng.: A, 334(1-2), 147-155. https://doi.org/10.1016/S0921-5093(01)01791-9.
- Do, T.V., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022.
- Doan, Q.H. and Lee, D.K. (2017) "Optimum topology design of multi-material structures with nonspurious buckling constraints", Adv. Eng. Softw., 114, 110-120. https://doi.org/10.1016/j.advengsoft.2017.06.002.
- Ebrahimi, M.J. and Najafizadeh, M.M. (2014), "Free vibration analysis of two-dimensional functionally graded cylindrical shells", Appl. Mathem. Modelling, 38(1), 308-324. https://doi.org/10.1016/j.apm.2013.06.015.
- Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068.
- El-Sabbagh, A., Akl, W. and Baz, A. (2008), "Topology optimization of periodic Mindlin plates", Finite Element. Anal. Des., 44, 439-449. https://doi.org/10.1016/J.FINEL.2008.01.016.
- Eftekhari, S.A. and Jafari, A.A. (2013), "Accurate variational approach for free vibration of variable thickness thin and thick plates with edges elastically restrained against translation and rotation", Int. J. Mech. Sci., 68, 35-46. https://doi.org/10.1016/j.ijmecsci.2012.12.012.
- Fares, M.E., Elmarghany, M.K. and Atta, D. (2015), "The influence of the normal strain effect on the control and design optimization of functionally graded plates", Compos. Part B: Eng., 77, 440-453. https://doi.org/10.1016/j.compositesb.2015.03.003.
- Goo, S., Wang, S., Hyun, J. and Jung, J. (2016), "Topology optimization of thin plate structures with bending stress constraints", Comput. Struct., 175, 134-143. https://doi.org/10.1016/j.compstruc.2016.07.006.
- Gouasmi, S., Megueni, A., Bouchikhi, A.S., Kamel, Z. and Abderahmane, S. (2015), "On the reduction of stress concentration factor around a notch using a functionally graded layer", Mater. Res., 18(5), 971-977. https://doi.org/10.1590/1516-1439.025115.
- Goupee, A.J. and Vel, S.S. (2006), "Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm", Comput. Meth. Appl. Mech. Eng., 195(44-47), 5926-5948. https://doi.org/10.1016/j.cma.2005.09.017.
- Jalali, S.K., Naei, M.H. and Poorsolhjouy, A. (2010), "Thermal stability analysis of circular functionally graded sandwich plates of variable thickness using pseudo-spectral method", Mater. Des., 31(10), 4755-4763. https://doi.org/10.1016/j.matdes.2010.05.009.
- Javed, S., Viswanathan, K.K., Aziz, Z.A. and Prabakar, K. (2016), "Free vibration of anti-symmetric angle-ply plates with variable thickness", Compos. Struct., 137, 56-69. https://doi.org/10.1016/j.compstruct.2015.11.016.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B-Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Kobayashi, H. and Sonoda, K. (1989), "Rectangular Mindlin plates on elastic foundations", Int. J. Mech. Sci., 31, 679-692. https://doi.org/10.1016/S0020-7403(89)80003-7.
- Kumar, R., Lal, A., Singh B.N. and Singh, J. (2019), "Meshfree approach on buckling and free vibration analysis of porous FGM plate with proposed IHHSDT resting on the foundation", Curved Lay. Struct., 6(1), 192-211. https://doi.org/10.1515/cls-2019-0017.
- Lieu, X.Q. and Lee, J.H. (2017), "A multi-resolution approach for multi-material topology optimization based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 323, 272-302. https://doi.org/10.1016/j.cma.2017.05.009.
- Lieu, X.Q., Lee, S.H., Kang, J.W. and Lee, J.H., (2018), "Bending and free vibration analyses of inplane bi-directional functionally graded plates with variable thickness using isogeometric analysis", Compos. Struct., 192, 434-451. https://doi.org/10.1016/j.compstruct.2018.03.021.
- Liu G.R. and Quek S.S. (2014), "The finite element method a practical course", Butterworth-Heinemann. https://doi.org/10.1016/C2012-0-00779-X.
- Luo, Q. and Tong, L. (2017), "A deformation mechanism-based material model for topology optimization of laminated composite plates and shells", Compos. Struct., 159, 246-256. https://doi.org/10.1016/j.compstruct.2016.09.056.
- Mantari, J.L., Ramos, I.A., Carrera, E. and Petrolo, M. (2016), "Static analysis of functionally graded plates using new non-polynomial displacement fields via Carrera Unified Formulation", Compos. Part B: Eng., 89, 127-142. https://doi.org/10.1016/j.compositesb.2015.11.025.
- Mehralian, F. and Beni, Y.T. (2016), "Size-dependent torsional buckling analysis of functionally graded cylindrical shell", Compos. Part B: Eng., 94, 11-25. https://doi.org/10.1016/j.compositesb.2016.03.048.
- Mori T. and Tanaka K., (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21, 571-5747. https://doi.org/10.1016/0001-6160(73)90064-3.
- Nemat-Alla, M. (2003), "Reduction of thermal stresses by developing two-dimensional functionally graded materials", Int. J. Solids Struct., 40(26), 7339-7356. https://doi.org/10.1016/j.ijsolstr.2003.08.017.
- Nguyen, D.D and Pham, T.T. (2014), "Nonlinear response of imperfect eccentrically stiffened ceramic-metal-ceramic FGM thin circular cylindrical shells surrounded on elastic foundations and subjected to axial compression", Compos. Struct., 110, 200-206. https://doi.org/10.1016/j.compstruct.2013.11.015.
- Nguyen N.T., Ngo D.T. and Nguyen X.H. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Meth. Appl. Mech. Eng., 326(1), 376-401. https://doi.org/10.1016/j.cma.2017.07.024.
- Nguyen, P.A., Banh, T.T., Lee, D.K., Lee, J.H., Kang, J. and Shin, S., (2017), "Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization", Steel Composite Structures, 29(5), 625-645. http://dx.doi.org/10.12989/scs.2018.29.5.635.
- Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2016), "Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos. Struct., 153, 428-441. https://doi.org/10.1016/j.compstruct.2016.06.045.
- Pham Q.H. and Phan D.H. (2022), "Polygonal topology optimization for Reissner-Mindlin plates", Eng. Comput., 38, 141-154. https://doi.org/10.1007/s00366-020-01047-2.
- Pham T.T., Nguyen T.T. and Lee, J.H. (2016), "Closed-form expression for nonlinear analysis of imperfect sigmoid-FGM plates with variable thickness resting on elastic medium", Compos. Struct., 143, 143-150. https://doi.org/10.1016/j.compstruct.2016.02.002.
- Phung, P.V, Nguyen, T.T., Luong, H.V., Thai, C.H. and Nguyen, X.H. (2014), "A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation", Comput. Meth. Appl. Mech. Eng., 272, 138-159. https://doi.org/10.1016/j.cma.2014.01.009.
- Qian, L.F., Batra R.C. and Chen L.M., (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35, 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.
- Rajagopal, A. and Hodges, D.H. (2015), "Variational asymptotic analysis for plates of variable thickness", Int. J. Solids Struct., 75-76, 81-87. https://doi.org/10.1016/j.ijsolstr.2015.08.002.
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley, New York, NY, USA.
- Roodsarabi, M., Khatibinia, M., Sarafrazi, S.R. (2016), "Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization", Steel Compos. Struct., 21(6), 1389-1410. http://dx.doi.org/10.12989/scs.2016.21.6.1389.
- Rozvany, G.I.N., Querin, O.M., Gaspar, Z. and Pomezanski, V. (2002), "Extended optimality in topology design", Struct. Multidiscipl. Optimiz. 24(257). https://doi.org/10.1007/s00158-002-0235-x.
- Senthil, S. Vel and R.C. Batra, (2002), "Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates", AIAA J., 40, 1421-1433. https://doi.org/10.2514/2.1805.
- Shufrin, I. and Eisenberger, M. (2016), "Semi-analytical modeling of cutouts in rectangular plates with variable thickness - Free vibration analysis", Appl. Mathem. Modelling, 40(15-16), 6983-7000. https://doi.org/10.1016/j.apm.2016.02.020.
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
- Simsek, M. (2016), "Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions", Compos. Struct., 149, 304-314. https://doi.org/10.1016/j.compstruct.2016.04.034.
- Simsek, M. and Al-shujairibc, M. (2017), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. Part B: Eng., 108, 18-34. https://doi.org/10.1016/j.compositesb.2016.09.098.
- Sigmund, O. and Torquato, S. (1997), "Design of materials with extreme thermal expansion using a three-phase topology optimization method", J. Mech. Phys. Solids, 45(6), 1037-1067. https://doi.org/10.1016/S0022-5096(96)00114-7.
- Sobhy, M. (2015), "Thermoelastic Response of FGM Plates with Temperature-Dependent Properties Resting on Variable Elastic Foundations", Int. Journal of Applied Mechanics, 7(6), 1550082. https://doi.org/10.1142/S1758825115500829.
- Sofiyev, A.H., Hui, D., Haciyev, V.C., Erdem, H., Yuan, G.Q., Schnack, E. and Guldal, V. (2017), "The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory", Compos. Part B: Eng., 116, 170-185. https://doi.org/10.1016/j.compositesb.2017.02.006.
- Tajeddini, V., Ohadi, A. and Sadighi, M. (2011), "Three-dimensional free vibration of variable thickness thick circular and annular isotropic and functionally graded plates on Pasternak foundation", Int. J. Mech. Sci., 53(4), 300-308. https://doi.org/10.1016/j.ijmecsci.2011.01.011.
- Tanaka, K., Tanaka, Y., Enomoto, K., Poterasu, V.F. and Sugano, Y. (1993a), "Design of thermoelastic materials using direct sensitivity and optimization methods. Reduction of thermal stresses in functionally gradient materials", Comput. Meth. Appl. Mech. Eng., 106(1-2), 271-284. https://doi.org/10.1016/0045-7825(93)90193-2.
- Tanaka, K., Tanaka, Y., Enomoto, K., Poterasu, V.F. and Sugano, Y. (1993b), "An improved solution to thermoelastic material design in functionally gradient materials: Scheme to reduce thermal stresses", Comput. Meth. Appl. Mech. Eng., 109(3-4), 377-389. https://doi.org/10.1016/0045-7825(93)90088-F.
- Tanaka, K., Watanabe, H., Sugano, Y. and Poterasu, V.F., (1996), "A multicriterial material tailoring of a hollow cylinder in functionally gradient materials: Scheme to global reduction of thermoelastic stresses", Comput. Meth. Appl. Mech. Eng., 135(3-4), 369-380. https://doi.org/10.1016/0045-7825(96)01014-6.
- Tavakoli, R. and Mohseni S., (2014), "Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation", Struct. Multidiscipl. Optimiz., 49, 621-642. https://doi.org/10.1007/s00158-013-0999-1.
- Thompson, L.L. and Thangavelu S.R., (2002), "A stabilized MITC element for accurate wave response in Reissner-Mindlin plates", Comput. Struct., 80, 769-789. https://doi.org/10.1016/S0045-7949(02)00046-9
- Turteltaub, S. (2002a), "Functionally graded materials for prescribed field evolution", Comput. Meth. Appl. Mech. Eng., 191(21-22), 2283-2296. https://doi.org/10.1016/S0045-7825(01)00408-X.
- Turteltaub, S. (2002b), "Optimal control and optimization of functionally graded materials for thermomechanical processes", Int. J. Solids and Structures, 39(12), 3175-3197. https://doi.org/10.1016/S0020-7683(02)00243-3
- Vatanabe, S.L., Lippi, T.N., Lima, C.R., Paulino, G.H., Silva, E.C. (2016), "Topology optimization with manufacturing constraints: A unified projection-based approach", Adv. Eng. Softw., 100, 97-112. https://doi.org/10.1016/j.advengsoft.2016.07.002.
- Xiang, T.S., Natarajan, S., Man, H., Song, C.M. and Gao, W (2014), "Free vibration and mechanical buckling of plates with in-plane material inhomogeneity - A three dimensional consistent approach", Compos. Struct., 118, 634-642. https://doi.org/10.1016/j.compstruct.2014.07.043.
- Xu, D., Chen, J., Tang, Y. and Cao, J., (2012), "Topology optimization of die weight reduction for high-strength sheet metal stamping", Int. J. Mech. Sci., 59, 73-82. https://doi.org/10.1016/j.ijmecsci.2012.03.006.
- Zhou, S.W, and Wang, M.Y., (2007), "Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition", Struct. Multidiscipl. Optimiz., 33, 89. https://doi.org/10.1007/s00158-006-0035-9.
- Zur, K.K. (2016), "Green's function for frequency analysis of thin annular plates with nonlinear variable thickness", Appl. Mathem. Modelling, 40(5-6), 3601-3619. https://doi.org/10.1016/j.apm.2015.10.014.