DOI QR코드

DOI QR Code

Effect of bolt preloading on rotational stiffness of stainless steel end-plate connections

  • Yuchen Song (School of Civil Engineering, The University of Sydney) ;
  • Brian Uy (School of Civil Engineering, The University of Sydney)
  • 투고 : 2022.05.18
  • 심사 : 2023.09.03
  • 발행 : 2023.09.10

초록

This study investigates the effect of bolt preloading on the rotational stiffness of stainless steel end-plate connections. An experimental programme incorporating 11 full-scale joint specimens are carried out comparing the behaviours of fully pre-tensioned (PT) and snug-tightened (ST) flush/extended end-plate connections, made of austenitic or lean duplex stainless steels. It is observed from the tests that the presence of bolt preloading leads to a significant increase in the rotational stiffness. A parallel finite element analysis (FEA) validated against the test results demonstrates that the geometric imperfection of end-plate has a strong influence on the moment-rotation response of preloaded end-plate connections, which is crucial to explain the observed "two-stage" behaviour of these connections. Based on the data obtained from the tests and FE parametric study, the performance of the Eurocode 3 predictive model is evaluated, which exhibits a significant deviation in predicting the rotational stiffness of stainless steel end-plate connections. A modified bi-linear model, which incorporates three key properties, is therefore proposed to enable a better prediction. Finally, the effect of bolt preloading is demonstrated at the system (structure) level considering the serviceability of semi-continuous stainless steel beams with end-plate connections.

키워드

과제정보

This work was financially supported by the Australian Research Council (ARC) under its Discovery Project scheme (DP180100418). The first author was supported by the Engineering and Information Technologies Research Scholarship (EITRS) awarded by the University of Sydney. Special thanks to Dr. Dongxu Li for his assistance in conducting the experimental tests. Some of the stainless steel materials used in the tests were generously donated by Outokumpu, Stirlings, Bumax, and Hobson, which are gratefully acknowledged.

참고문헌

  1. EN 1993-1-8 (2005), Eurocode 3: Design of Steel Structures, Part 1-8: Design of Joints, Comite Europeen de Normalisation, Brussels, Belgium.
  2. EN 1090-2 (2008), Execution of Steel Structures and Aluminium Structures-Part 2: Technical Requirements for Steel Structures, European Committee for Standardisation, Brussels
  3. EN/ISO 3506-1 (2009), Mechanical Properties of Corrosion-Resistant Stainless Steel Fasteners, Part 1: Bolts, Screws and Studs, Comite Europeen de Normalisation, Brussels, Belgium.
  4. EN 1993-1-4 (2015), Eurocode 3: Design of Steel Structures, Part 1-4: General Rules-Supplementary Rules for Stainless Steels, Comite Europeen de Normalisation, Brussels, Belgium.
  5. Afzali, N., Stranghoner, N., Pilhagen, J., Manninen, T. and Schedin, E. (2019), "Viscoplastic deformation behaviour of preloaded stainless steel connections", J. Const. Steel Res., 152 225-234. https://doi.org/10.1016/j.jcsr.2018.07.004.
  6. Averseng, J., Bouchair, A. and Chateauneuf, A. (2017), "Reliability analysis of the nonlinear behaviour of stainless steel cover-plate joints", Steel Compos. Struct., 25(1), 45-55. https://doi.org/10.12989/scs.2017.25.1.045.
  7. Bu, Y., Wang, Y. and Zhao, Y. (2019), "Study of stainless steel bolted extended end-plate joints under seismic loading", Thin Wall. Struct., 144, 106255. https://doi.org/10.1016/j.tws.2019.106255.
  8. Cai, Y. and Young, B. (2014), "Structural behavior of cold-formed stainless steel bolted connections", Thin-Wall. Struct., 83, 147-156. https://doi.org/10.1016/j.tws.2014.01.014.
  9. Cai, Y. and Young, B. (2018), "Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures", Steel Compos. Struct., 29(2), 273-286.
  10. Cai, Y. and Young, B. (2019), "Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates", Steel Compos. Struct., 30(6), 551-565. https://doi.org/10.12989/scs.2019.30.6.551.
  11. Eladly, M.M. (2020), "Behaviour of stainless steel beam-to-column bolted connections-Part 1: Simplified FE model", J. Const. Steel Res., 164, 105784. https://doi.org/10.1016/j.jcsr.2019.105784.
  12. Elflah, M., Theofanous, M. and Dirar, S. (2019a), "Behaviour of stainless steel beam-to-column joints-Part 2: Numerical modelling and parametric study", J. Constr. Steel Res., 152, 194-212. https://doi.org/10.1016/j.jcsr.2018.04.017.
  13. Elflah, M., Theofanous, M., Dirar, S. and Yuan, H. (2019b), "Behaviour of stainless steel beam-to-column joints-Part 1: Experimental investigation", J. Constr. Steel Res., 152, 183-193. https://doi.org/10.1016/j.jcsr.2018.02.040
  14. Elflah, M., Theofanous, M., Dirar, S. and Yuan, H. (2019c), "Structural behaviour of stainless steel beam-to-tubular column joints", Eng. Struct., 184, 158-175. https://doi.org/10.1016/j.engstruct.2019.01.073.
  15. Faella, C., Piluso, V. and Rizzano, G. (1998), "Experimental analysis of bolted connections: snug versus preloaded bolts", J. Struct. Eng., 124(7), 765-774. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:7(765).
  16. Fang, C., Zhou, F. and Luo, C. (2018), "Cold-formed stainless steel RHSs/SHSs under combined compression and cyclic bending", J. Const. Steel Res., 141, 9-22. https://doi.org/10.1016/j.jcsr.2017.11.001.
  17. Gao, J.D., Du, X.X., Yuan, H.X. and Theofanous, M. (2021), "Hysteretic performance of stainless steel double extended endplate beam-to-column joints subject to cyclic loading", Thin Wall. Struct., 164, 107787. https://doi.org/10.1016/j.tws.2021.107787.
  18. Gao, J.D., Yuan, H.X., Du, X.X., Hu, X.B. and Theofanous, M. (2020), "Structural behaviour of stainless steel double extended end-plate beam-to-column joints under monotonic loading", Thin Wall. Struct., 151, 106743. https://doi.org/10.1016/j.tws.2020.106743.
  19. Gardner, L. and Nethercot, D.A. (2004), "Experiments on stainless steel hollow sections - Part 1: Material and cross-sectional behaviour", J. Constr. Steel Res., 60(9), 1291-1318. https://doi.org/10.1016/j.jcsr.2003.11.006.
  20. Hasan, M.J., Al-Deen, S. and Ashraf, M. (2019), "Behaviour of top-seat double web angle connection produced from austenitic stainless steel", J. Const. Steel Res., 155 460-479. https://doi.org/10.1016/j.jcsr.2018.12.015.
  21. Hasan, M.J., Ashraf, M. and Uy, B. (2017), "Moment-rotation behaviour of top-seat angle bolted connections produced from austenitic stainless steel", J. Const. Steel Res., 136, 149-161. https://doi.org/10.1016/j.jcsr.2017.05.014.
  22. Jaspart, J.P. and Maquoi, R. (1995), Effect of Bolt Preloading on Joint Behaviour, Rotterdam, The Netherlands.
  23. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Const. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012.
  24. Liang, G., Guo, H., Liu, Y., Yang, D. and Li, S. (2019), "A comparative study on tensile behavior of welded T-stub joints using Q345 normal steel and Q690 high strength steel under bolt preloading cases", Thin Wall. Struct., 137, 271-283. https://doi.org/10.1016/j.tws.2019.01.023.
  25. Nip, K.H., Gardner, L. and Elghazouli, A.Y. (2010), "Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members", Eng. Struct., 32(2), 424-441. https://doi.org/10.1016/j.engstruct.2009.10.005.
  26. Salih, E.L., Gardner, L. and Nethercot, D.A. (2010), "Numerical investigation of net section failure in stainless steel bolted connections", J. Constr. Steel Res., 66(12), 1455-1466. https://doi.org/10.1016/j.jcsr.2010.05.012.
  27. Song, Y., Uy, B., Li, D. and Wang, J. (2022), "Ultimate behaviour and rotation capacity of stainless steel end-plate connections", Steel Compos. Struct., 42(4), 569-590. https://doi.org/10.12989/scs.2022.42.4.569.
  28. Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.
  29. Song, Y., Wang, J., Uy, B. and Li, D. (2020), "Experimental behaviour and fracture prediction of austenitic stainless steel bolts under combined tension and shear", J. Const. Steel Res., 166, 105916. https://doi.org/10.1016/j.jcsr.2019.105916.
  30. Song, Y., Wang, J., Uy, B. and Li, D. (2021), "Behaviour and design of stainless steel-concrete composite beam-to-column joints", J. Const. Steel Res., 184, 106800. https://doi.org/10.1016/j.jcsr.2021.106800.
  31. Stranghoner, N., Afzali, N., de Vries, P., Schedin, E. and Pilhagen, J. (2019), "Slip factors for slip-resistant connections made of stainless steel", J. Const. Steel Res., 152, 235-245. https://doi.org/10.1016/j.jcsr.2018.07.005.
  32. Theofanous, M. and Gardner, L. (2009), "Testing and numerical modelling of lean duplex stainless steel hollow section columns", Eng. Struct., 31(12), 3047-3058. https://doi.org/10.1016/j.engstruct.2009.08.004.
  33. Theofanous, M. and Gardner, L. (2010), "Experimental and numerical studies of lean duplex stainless steel beams", J. Constr. Steel Res., 66(6), 816-825. https://doi.org/10.1016/j.jcsr.2010.01.012.
  34. Uy, B., Tao, Z. and Han, L.-H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Const. Steel Res., 67(3), 360-378. https://doi.org/10.1016/j.jcsr.2010.10.004.
  35. Wang, J., Uy, B. and Li, D. (2019a), "Behaviour of large fabricated stainless steel beam-to-tubular column joints with extended endplates", Steel Compos. Struct., 32(1), 141-156. https://doi.org/10.12989/scs.2019.32.1.141.
  36. Wang, J., Uy, B. and Li, D. (2019b), "Initial stiffness and moment capacity assessment of stainless steel composite bolted joints with concrete-filled circular tubular columns", Steel Compos. Struct., 33(5), 681-697. https://doi.org/10.12989/scs.2019.33.5.681.
  37. Young, B. and Ellobody, E. (2006), "Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns", J. Const. Steel Res., 62(5), 484-492. https://doi.org/10.1016/j.jcsr.2005.08.004.
  38. Yuan, H.X., Gao, J.D., Theofanous, M., Yang, L. and Schafer, B.W. (2020), "Initial stiffness and plastic resistance of bolted stainless steel T-stubs in tension", J. Const. Steel Res., 173, 106239. https://doi.org/10.1016/j.jcsr.2020.106239.
  39. Zheng, B., Wang, J., Gu, Y., Shu, G., Xie, J. and Jiang, Q. (2021), "Experimental study on stainless steel high-strength bolted slip-resistant connections", Eng. Struct., 231, 111778. https://doi.org/10.1016/j.engstruct.2020.111778.
  40. Zhou, F., Fang, C. and Chen, Y. (2018), "Experimental and numerical studies on stainless steel tubular members under axial cyclic loading", Eng. Struct., 171, 72-85. https://doi.org/10.1016/j.engstruct.2018.05.093.