DOI QR코드

DOI QR Code

Steel-UHPC composite dowels' pull-out performance studies using machine learning algorithms

  • Zhihua Xiong (College of Water Resources and Architectural Engineering, Northwest A&F University) ;
  • Zhuoxi Liang (College of Water Resources and Architectural Engineering, Northwest A&F University) ;
  • Xuyao Liu (College of Water Resources and Architectural Engineering, Northwest A&F University) ;
  • Markus Feldmann (Institute of Steel Construction, RWTH Aachen University) ;
  • Jiawen Li (College of Water Resources and Architectural Engineering, Northwest A&F University)
  • Received : 2022.07.18
  • Accepted : 2023.08.03
  • Published : 2023.09.10

Abstract

Composite dowels are implemented as a powerful alternative to headed studs for the efficient combination of Ultra High-Performance Concrete (UHPC) with high-strength steel in novel composite structures. They are required to provide sufficient shear resistance and ensure the transmission of tensile forces in the composite connection in order to prevent lifting of the concrete slab. In this paper, the load bearing capacity of puzzle-shaped and clothoidal-shaped dowels encased in UHPC specimen were investigated based on validated experimental test data. Considering the influence of the embedment depth and the spacing width of shear dowels, the characteristics of UHPC square plate on the load bearing capacity of composite structure, 240 numeric models have been constructed and analyzed. Three artificial intelligence approaches have been implemented to learn the discipline from collected experimental data and then make prediction, which includes Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Adaptive Neuro-Fuzzy Inference System (ANFIS) and an Extreme Learning Machine (ELM). Among the factors, the embedment depth of composite dowel is proved to be the most influential parameter on the load bearing capacity. Furthermore, the results of the prediction models reveal that ELM is capable to achieve more accurate prediction.

Keywords

Acknowledgement

The research is supported by Elite Scholar Program of Northwest A&F University and CSC Funding (Grant No. Z111022001 and No. 202206305001).

References

  1. Al-Shamiri, A.K., Kim, J.H., Yuan, T.F. and Yoon, Y.S. (2019), "Modeling the compressive strength of high-strength concrete: an extreme learning approach", Constr. Build. Mater., 208, 204-219. https://doi.org/10.1016/j.conbuildmat.2019.02.165.
  2. Ali, T. (2015), "Applications of the ANFIS and LR models in the prediction of shear connection in composite beams", Ph.D. Dissertation, University of Malaya.
  3. Alizamir, M. and Sobhanardakani, S. (2018), "Neural network-particle swarm optimization (ANN-PSO) approach to predict heavy metals", Contamination in Groundwater Resources. Jundishapur J. Health Sci., 10.
  4. Berthellemy, J., Lorenc, W., Mensinger, M., Ndogmo, J. and Seidl, G. (2011), "Load bearing behaviour of composite dowels - fatigue behaviour (part II)", Stahlbau, 80(4), 256-267. https://doi.org/10.1002/stab.201101418
  5. Berthellemy, J., Lorenc, W., Mensinger, M., Rauscher, S. and Seidl, G. (2011), "Load bearing behaviour of composite dowels - static loads (part I)", Stahlbau, 80(3), 172-184. https://doi.org/10.1002/stab.201101408
  6. Cheng, Z., Zhang, Q., Bao, Y., Deng, P., Wei, C. and Li, M. (2021), "Flexural behavior of corrugated steel-UHPC composite bridge decks", Eng. Struct., 246, 113066. https://doi.org/10.1016/j.engstruct.2021.113066.
  7. Classen, M., Gallwoszus, J. and Stark, A. (2016), "Anchorage of composite dowels in UHPC under fatigue loading", Struct. Concrete, 17(2), 183-193. https://doi.org/10.1002/suco.201500034.
  8. Feldmann, M., Kopp, M. and Pak, D. (2016), "Composite dowels as shear connectors for composite beams-background to the German technical approval", Steel Construct., 9(2), 80-88. https://doi.org/10.1002/stco.201610020.
  9. Gao, W., Karbasi, M., Derakhsh, A.M. and Jalili, A. (2019), "Development of a novel soft-computing framework for the simulation aims: a case study", Eng Comput., 35(1), 315-322. https://doi.org/10.1007/s00366-018-0601-y.
  10. Gowripalan, N. and Gilbert, R.I. (2000), "Design guidelines for ductal prestressed concrete beams", Reference Artical, The University of NSW.
  11. Hechler, O., Lorenc, W., Seidl, G. and Viefhues, E. (2008), "Continuous shear connectors in bridge construction", Composite Construction VI Conference, Colorado, USA.
  12. Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006), "Extreme learning machine: Theory and applications", Neurocomputing, 70(1-3), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126.
  13. Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006), "Extreme learning machine: theory and applications", Neurocomputing, 70(1), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126.
  14. Huang, P., He, J., Kong, F., Mei, K. and Li, X. (2022), "Experimental study on the bearing capacity of PZ shape composite dowel shear connectors with elliptical holes", Scientific Reports, 12(1), 1-15. https://doi.org/10.1038/s41598-022-06387-1.
  15. Jang, J.S. (1993), "ANFIS: Adaptive-network-based Fuzzy Inference System", IEEE TRANS. SYST. MAN CYBERN, 23(3), 665-685. https://doi.org/10.1109/21.256541.
  16. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2020), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 36(4), 1539-1558. https://doi.org/10.1007/s00366-019-00780-7.
  17. Kennedy, J. and Eberhart, R.C. (1997), "A discrete binary version of the particle swarm algorithm", In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, October.
  18. Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell Indicator", Composite Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
  19. Leonhardt, F., Andrae, W., Andrae, H.P. and Harre, W. (1987), "New, improved bonding means for composite loadberaing structures with high fatigue strength", Beton- Stahlbetonbau, 82(12), 325-331. https://doi.org/10.1002/best.198700500
  20. Leung, H.C., Leung, C.S. and Wong, E.W.M. (2019), "Fault and noise tolerance in the incremental extreme learning machine", IEEE Access, 7, 155171-155183. https://doi.org/10.1109/ACCESS.2019.2948059.
  21. Leutbecher, T. (2008), "Rissbildung und Zugtragverhalten von mit Stabstahl und Fasern bewehrtem Ultrahochfesten Beton (UHPC)". Dissertation, Schriftenreihe Baustoffe und Massivbau, Heft 9, Kassel: kassel university press GmbH,.
  22. Mangerig, I., Burger, S., Wagner, R., Wurzer, O. and Zapfe, C. (2011), "The application of concrete dowels in composite constructions (part 1) - statical loading", Stahlbau, 80(12), 885-893. https://doi.org/10.1002/stab.201101500
  23. Mangerig, I., Burger, S., Wagner, R., Wurzer, O. and Zapfe, C, (2012), "The application of concrete dowels in composite constructions (part 2) - dynamic loading", Stahlbau, 81(1), 26-31. https://doi.org/10.1002/stab.201201512
  24. Mirza, O. and Uy, B. (2010), "Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors", Eng. Struct., 32(1), 93-105. https://doi.org/10.1016/j.engstruct.2009.08.019.
  25. Nguyen, H., Bui, X.N., Tran, Q.H., Le, T.Q., Do, N.H. and Hoa, L. T.T. (2019), "Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: A case study in Vietnam", SN Appl. Sci., 1(1), 1-11. https://doi.org/10.1007/s42452-018-0136-2.
  26. Priddy, K.L. and Keller, P.E. (2005), "Artificial neural networks: an introduction", 68. SPIE press, Bellingham.
  27. Safa, M. and Kachitvichyanukul, V. (2019), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., 70(5), 639-647.
  28. Schmitt, V., Seidl, G., Hever, M. and Zapfe, C. (2004), "Verbundbrucke Pocking-Innovative VFT-Trager mit Betondubeln". Stahlbau. 73(6), 387-393. https://doi.org/10.1002/stab.200490108.
  29. Shariati, M., Mafipour, M. S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M. N. and Poi-Ngian, S. (2019), "Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.
  30. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N. (2021), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 37(3), 2089-2109. https://doi.org/10.1007/s00366-019-00930-x.
  31. Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019), "Moment-rotation estimation of steel rack connection using extreme learning machine", Steel Compos Struct., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
  32. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2018), "RETRACTED ARTICLE: Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manuf., 29(8), 1793-1801. https://doi.org/10.1007/s10845-016-1217-y.
  33. Vasumathi, B. and Moorthi, S. (2012), "Implementation of hybrid ANN-PSO algorithm on FPGA for harmonic estimation", Eng. Appl. Artif. Intel., 25(3), 476-483. https://doi.org/10.1016/j.engappai.2011.12.005.
  34. Xue, J., Briseghella, B., Huang, F., Nuti, C., Tabatabai, H. and Chen, B. (2020), "Review of ultra-high performance concrete and its application in bridge engineering", Construct. Build. Mater., 260, 119844. https://doi.org/10.1016/j.conbuildmat.2020.119844.
  35. Ye, J., Hajirasouliha, I., Becque, J. and Eslami, A. (2016), "Optimum design of cold-formed steel beams using Particle Swarm Optimisation method", J. Constr. Steel Res, 122, 80-93. https://doi.org/10.1016/j.jcsr.2016.02.014.
  36. Z-26.4-38 (2007), Perfobond-Leiste, Allgemeine bauaufsichtliche Zulassung.
  37. Z-26.4-56 (2013), Verbunddubelleisten, Allgemeine bauaufsichtliche Zulassung.
  38. Zhu, J.S., Wang, Y.G., Yan, J.B. and Guo, X.Y. (2020), "Shear behaviour of steel-UHPC composite beams in waffle bridge deck", Compos. Struct., 234, 111678. https://doi.org/10.1016/j.compstruct.2019.111678.