DOI QR코드

DOI QR Code

A numerical study on shear response of concrete-filled stainless steel tubes

  • Sina Kazemzadeh Azad (School of Civil Engineering, The University of Sydney) ;
  • Brian Uy (School of Civil Engineering, The University of Sydney)
  • Received : 2021.07.31
  • Accepted : 2023.07.04
  • Published : 2023.09.10

Abstract

The number of studies investigating the response of concrete-filled tubes (CFTs) under shear has been very limited in the literature. This lack of research has been traditionally reflected in international design standards as rather conservative shear strength predictions for CFTs. The dearth of research on the shear response is even more pronounced for the case of concrete-filled stainless steel tubes (CFSSTs). In line with this, the present study investigates the shear response of circular and square CFSSTs using advanced finite element (FE) analysis. A thorough review of the previous studies on the shear response of carbon steel CFTs is provided along with a summary of past experimental programmes as well as the developed and codified design methods. A comprehensive numerical study is then conducted considering a wide range of circular and square, austenitic and lean duplex CFSSTs with different concrete infills and shear span-to-depth ratios. The effect of the tail length on the shear response is investigated and the minimum required tail length for achieving full shear capacity is established. The simulations are also used to highlight the importance of the dilation of the concrete core in the shear response of concrete-filled tubes and its relationship with the utilised boundary conditions. Furthermore, the numerical results are compared in detail with the predictions of design approaches developed previously for carbon steel CFTs and their accuracy and applicability to the stainless steel counterpart are demonstrated and recommendations are made accordingly.

Keywords

Acknowledgement

The study was supported by the Australian Research Council (ARC) through projects DP180100418 and LP160101484. The authors also acknowledge the technical support of the Sydney Informatics Hub (SIH) in facilitating access to Artemis, the high performance computing cluster of the University of Sydney. The assistance of Dr Yuchen Song in translating parts of the Chinese design codes and papers is also gratefully acknowledged.

References

  1. AASHTO (2020), LRFD Bridge Design Specifications, 9th ed., American Association of State Highway and Transportation Officials, Washington, DC. 
  2. ABAQUS 6.14-1 (2014), Dassault Systemes, Simulia, Providence, RI. 
  3. AISC (2016), Specification for Structural Steel Buildings, ANSI/AISC 360-16, American Institute of Steel Construction, Chicago, IL. 
  4. AISC (2022), Specification for Structural Steel Buildings, ANSI/AISC 360-22 (Draft), American Institute of Steel Construction, Chicago, IL. 
  5. AS/NZS 2327:2017 (+Amd 1:2020) (2020), Composite Structures - Composite Steel-Concrete Construction in Buildings, Standards Australia/Standards New Zealand, Sydney, Australia/Wellington, New Zealand. 
  6. Cai, J., Liang, W.-S. and Lin, H. (2012), "Experimental study on shear resistance performance of concrete filled square steel tubular columns", J. Shenzhen U. Sci. Eng., 29(3), 189-194 [in Chinese]. https://doi.org/10.3724/SP.J.1249.2012.03189. 
  7. CEB-FIP (1993), CEB-FIP Model Code 1990, Thomas Telford, London. 
  8. Chen, Y., Wang, K., Feng, R., He, K. and Wang, L. (2017), "Flexural behaviour of concrete-filled stainless steel CHS subjected to static loading", J. Constr. Steel Res., 139, 30-43. https://doi.org/10.1016/j.jcsr.2017.09.009. 
  9. Dai, X. and Lam, D. (2010), "Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections", Steel Compos. Struct., 10(6), 517-539. https://doi.org/10.12989/scs.2010.10.6.517. 
  10. DBJ/T13-51-2010 (2010), Technical Specifications for Concrete-filled Steel Tubular Structures, Housing and Urban-Rural Development Department of Fujian Province, Fuzhou, China. [in Chinese] 
  11. Decker, J.B., Rollins, K.M. and Ellsworth, J.C. (2008), "Corrosion Rate Evaluation and Prediction for Piles Based on Long-Term Field Performance", J. Geotech. Geoenviron. ASCE, 134(3), 341-351. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(341). 
  12. Ellobody, E. and Ghazy, M. F. (2012), "Experimental investigation of eccentrically loaded fibre reinforced concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 76, 167-176. https://doi.org/10.1016/j.jcsr.2012.04.001. 
  13. Ellobody, E. and Young, B. (2006), "Design and behaviour of concrete-filled cold-formed stainless steel tube columns", Eng. Struct., 28(5), 716-728. https://doi.org/10.1016/j.engstruct.2005.09.023. 
  14. Eurocode 2 (2003), Design of Concrete Structures - Part 1-1: General rules and rules for buildings, EN 1992-1-1:2003, European Standard, Comite Europeen de Normalisation, Brussels, Belgium. 
  15. Eurocode 4 (2004), Design of Composite Steel and Concrete Structures - Part 1-1: General Rules and Rules for Buildings, EN 1994-1-1:2004, European Standard, Comite Europeen de Normalisation, Brussels, Belgium. 
  16. Fu, Q., Ding, F.-X., Zhang, T., Wang, L. and Fang, C.-J. (2018), "Composite action of hollow concrete-filled circular steel tubular stub columns", Steel Compos. Struct., 26(6), 693-703. https://doi.org/10.12989/scs.2018.26.6.693. 
  17. Fujimoto, T., Mukai, A., Nishiyama, I., Inai, E., Kai, M. and Tokinoya, H. (1998), "Shear-flexural behavior of concrete filled steel tubular beam-columns using high strength materials", J. Struct. Constr. Eng. AIJ, 509, 167-174.  https://doi.org/10.3130/aijs.63.167_1
  18. Gardner, L. and Yun, X. (2018), "Description of stress-strain curves for cold-formed steels", Constr. Build. Mater., 189, 527-538. https://doi.org/10.1016/j.conbuildmat.2018.08.195. 
  19. GB 50010-2010 (2010), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development, Beijing. [in Chinese] 
  20. Han, L.-H., Tao, Z. and Yao, G.-H. (2008), "Behaviour of concrete-filled steel tubular members subjected to shear and constant axial compression", Thin Wall. Struct., 46(7), 765-780. https://doi.org/10.1016/j.tws.2008.01.026. 
  21. Han, L.-H., Zhao, X.-L., and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1(1), 51-74. https://doi.org/10.1296/SCS2001.01.01.04. 
  22. Han, L. H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016. 
  23. He, A., Liang, Y. and Zhao, O. (2020), "Flexural buckling behaviour and resistances of circular high strength concretefilled stainless steel tube columns", Eng. Struct., 219, 110893. ttps://doi.org/10.1016/j.engstruct.2020.110893. 
  24. He, A., Wang, F. and Zhao, O. (2019), "Experimental and numerical studies of concrete-filled high-chromium stainless steel tube (CFHSST) stub columns", Thin Wall. Struct., 144, 106273. ttps://doi.org/10.1016/j.tws.2019.106273. 
  25. Ikeda, M., Saito, M., Aoki, C., Bandai, Y. and Yoshida, N. (2014), "Evaluation of bnding cpacity and deformation performance of concrete filled steel tube member with small shear-span ratio", Q Rep. RTRI, 55(4), 197-203. https://doi.org/10.2219/rtriqr.55.197. 
  26. JGJ 138-2016 (2016), Code for Design of Composite Structures, China Architecture & Building Press, Beijing. [in Chinese] 
  27. Jin, L., Fan, L., Li, D. and Du, X. (2020), "Size effect of square concrete-filled steel tubular columns subjected to lateral shear and axial compression: Modelling and formulation", Thin Wall. Struct., 157, 107158. https://doi.org/10.1016/j.tws.2020.107158. 
  28. Jung, E.-b., Lee, S.-H., Yoo, J.-H., Roeder, C. and Lehman, D. (2017), "Shear behavior of large-diameter concrete filled tube (CFT)", Int. J. Steel Struct., 17(4), 1651-1665. https://doi.org/10.1007/s13296-017-1229-2. 
  29. Kazemzadeh Azad, S. (2021), Behaviour and Design of Fabricated Concrete-Filled Stainless Steel Tubular Columns, PhD Thesis, School of Civil Engineering, The University of Sydney, Australia. 
  30. Kazemzadeh Azad, S., Li, D. and Uy, B. (2020a), "Axial Slenderness Limits for Austenitic Stainless Steel-Concrete Composite Columns", J. Constr. Steel Res., 166 https://doi.org/10.1016/j.jcsr.2019.105856. 
  31. Kazemzadeh Azad, S., Li, D. and Uy, B. (2020b), "Axial Slenderness Limits for Duplex and Lean Duplex Stainless Steel-Concrete Composite Columns", J. Constr. Steel Res., 172 https://doi.org/10.1016/j.jcsr.2020.106175 
  32. Kazemzadeh Azad, S., Li, D. and Uy, B. (2021), "Compact and Slender Box Concrete-Filled Stainless Steel Tubes under Compression, Bending, and Combined Loading", J. Constr. Steel Res., 184, 106813. https://doi.org/10.1016/j.jcsr.2021.106813. 
  33. Kazemzadeh Azad, S. and Uy, B. (2020), "Effect of Concrete Infill on Local Buckling Capacity of Circular Tubes", J. Constr. Steel Res., 165, 105899. https://doi.org/10.1016/j.jcsr.2019.105899. 
  34. Kenarangi, H. (2018), Analytical and Experimental Study of the Contribution of Steel Casing to Single Shaft Foundation Flexural and Shear Resistance, PhD Thesis, Department of Civil, Structural and Environmental Engineering, State University of New York at Buffalo, NY. 
  35. Kenarangi, H., and Bruneau, M. (2020a), "Investigation of cyclicshear behavior of circular-reinforced concrete-filled steel tubes", J. Struct. Eng., 146(5), 04020057. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002598. 
  36. Kenarangi, H. and Bruneau, M. (2020b), "Shear strength of composite circular reinforced concrete-filled steel tubes", J. Struct. Eng., 146(1), 04019180. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002456. 
  37. Lai, Z. and Varma, A. H. (2015), "Noncompact and slender circular CFT members: Experimental database, analysis, and design", J. Constr. Steel Res., 106, 220-233. https://doi.org/10.1016/j.jcsr.2014.11.005. 
  38. Lai, Z., Varma, A. H. and Griffis, L. G. (2016), "Analysis and Design of Noncompact and Slender CFT Beam-Columns", J. Struct. Eng., 142(1), 04015097. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001349. 
  39. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012. 
  40. Lehman, D., Roeder, C., Heid, A., Maki, T. and Khaleghi, B. (2018), "Shear response of concrete filled tubes part 1: Experiments", J. Constr. Steel Res., 150, 528-540. https://doi.org/10.1016/j.jcsr.2018.08.027. 
  41. Lehman, D., Roeder, C., Heid, A. and Yoo, J.H. (2019), "Shear response of concrete filled tubes part II: Analytical study", J. Constr. Steel Res., 153, 169-178. https://doi.org/10.1016/j.jcsr.2018.08.019. 
  42. Lehman, D., Roeder, C. and Zhao, M. (2021), "Discussion of 'Shear Strength of Composite Circular Reinforced Concrete-Filled Steel Tubes' by Hadi Kenarangi and Michel Bruneau", J. Struct. Eng., 147(2), 07020015. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002856. 
  43. Mansouri, A. (2020), "Shear Strength of Concrete-Filled Steel Tubes Based on Experimental Results", J. Struct. Eng., 146(6), 04020097. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002646. 
  44. Minami, K. and Wakabayashi, M. (1985), "Rational Analysis of Shear in Composite Columns", Proceedings of The IABSEECCS Symposium, Steel in Buildings, Luxembourg.
  45. Mirza, S.A. and Lacroix, E.A. (2004), "Comparative strength analyses of concrete-encased steel composite columns", J. Struct. Eng., 130(12), 1941-1953. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1941). 
  46. Mursi, M. and Uy, B. (2003), "Strength of Concrete Filled Steel Box Columns Incorporating Interaction Buckling", J. Struct. Eng., 129(5), 626-639. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(626). 
  47. Nakahara, H. and Tsumura, R. (2014), "Experimental study on shearing behavior of circular CFT short column", J. Struct. Constr. Eng. AIJ, 79(703), 1385-1393. https://doi.org/10.3130/aijs.79.1385. 
  48. Poliotti, M. and Bairan, J.-M. (2019), "A new concrete plastic-damage model with an evolutive dilatancy parameter", Eng. Struct., 189, 541-549. https://doi.org/10.1016/j.engstruct.2019.03.086. 
  49. Qian, J., Cui, Y. and Fang, X. (2007), "Shear strength tests of concrete filled steel tube columns", China Civ. Eng. J., 40(5), 1-9. https://doi.org/10.15951/j.tmgcxb.2007.05.001. 
  50. Roeder, C.W. and Lehman, D. (2012), Initial Investigation of Reinforced Concrete Filled Tubes for use in Bridge Foundations, Report No. WA-RD 776.1, Washington State Department of Transportation, Olympia, WA. 
  51. Roeder, C.W., Lehman, D., Heid, A. and Maki, T. (2016), Shear Design Expressions for Concrete Filled Steel Tube and Reinforced Concrete Filled Tube Components, Report No. WARD 776.2, Washington State Department of Transportation, Olympia, WA. 
  52. Roik, K. and Bergmann, R. (1992), "Composite Columns," In: Constructional Steel Design. P. Dowling, J. E. Harding, and R. Bjorhovde (Eds.), Elsevier, New York. 
  53. Sakino, K. and Ishibashi, H. (1985), "Experimental studies on concrete filled square steel tubular short columns subjected to cyclic shearing force and constant axial force", Tans. Arch. Inst. Jap., 353(7), 81-89. https://doi.org/10.3130/aijsx.353.081. 
  54. Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9. 
  55. Tao, Z., Song, T.Y., Uy, B. and Han, L.H. (2016), "Bond behavior in concrete-filled steel tubes", J. Constr. Steel Res., 120, 81-93. https://doi.org/10.1016/j.jcsr.2015.12.030. 
  56. Tao, Z., Uy, B., Liao, F.Y. and Han, L.H. (2011), "Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression", J. Constr. Steel Res., 67(11), 1719-1732. https://doi.org/10.1016/j.jcsr.2011.04.012. 
  57. Tao, Z., Wang, Z.-B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001. 
  58. Thai, H.T., Uy, B., Khan, M., Tao, Z. and Mashiri, F. (2014), "Numerical modelling of concrete-filled steel box columns incorporating high strength materials", J. Constr. Steel Res., 102, 256-265. https://doi.org/10.1016/j.jcsr.2014.07.014. 
  59. Thomas, J. and Sandeep, T.N. (2018), "Experimental study on circular CFST short columns with intermittently welded stiffeners", Steel Compos. Struct., 29(5), 659-667. https://doi.org/10.12989/scs.2018.29.5.659. 
  60. Tokgoz, S. (2015), "Tests on plain and steel fiber concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 114, 129-135. https://doi.org/doi.org/10.1016/j.jcsr.2015.07.013. 
  61. Tomii, M. and Sakino, K. (1979), "Experimental studies on concrete filled square steel tubular beam-columns subjected to monotonic shearing force and constant axial force", Tans. Arch. Inst. Jap., 281(7), 81-90.  https://doi.org/10.3130/aijsaxx.281.0_81
  62. Uy, B. (2000), "Strength of concrete filled steel box columns incorporating local buckling", J. Struct. Eng., 126(3), 341-352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341). 
  63. Uy, B., Tao, Z. and Han, L. H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 67(3), 360-378. https://doi.org/10.1016/j.jcsr.2010.10.004. 
  64. Vermeer, P. (1998), "Non-associated plasticity for soils, concrete and rock", In: Physics of Dry Granular Media. Springer. 
  65. Wang, J.-T. and Wang, F.-C. (2021), "Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression", Steel Compos. Struct., 38(6), 617-635. https://doi.org/10.12989/scs.2021.38.6.617. 
  66. Wosatko, A., Winnicki, A., Polak, M.A. and Pamin, J. (2019), "Role of dilatancy angle in plasticity-based models of concrete", Arch. Civ. Mech. Eng., 19(4), 1268-1283. https://doi.org/10.1016/j.acme.2019.07.003. 
  67. WSDOT (2020), Bridge Design Manual (LRFD), Washington State Department of Transportation, Olympia, WA. 
  68. Xiao, C., Cai, S., Chen, T. and Xu, C. (2012), "Experimental study on shear capacity of circular concrete filled steel tubes", Steel Compos. Struct., 13(5), 437-449. https://doi.org/10.12989/scs.2012.13.5.437. 
  69. Xiushu, Q., Zhihua, C. and Guojun, S. (2015), "Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods", Steel Compos. Struct., 18(1), 71-90. https://doi.org/10.12989/scs.2015.18.1.071. 
  70. Xu, C., Haixiao, L. and Chengkui, H. (2009), "Experimental study on shear resistance of self-stressing concrete filled circular steel tubes", J. Constr. Steel Res., 65(4), 801-807. https://doi.org/0.1016/j.jcsr.2008.12.004.  1016/j.jcsr.2008.12.004
  71. Yang, Y.F. and Ma, G.L. (2013), "Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams", Thin Wall. Struct., 66, 62-75. https://doi.org/10.1016/j.tws.2013.01.017. 
  72. Ye, Y., Han, L.-H., Tao, Z. and Guo, S.-L. (2016), "Experimental behaviour of concrete-filled steel tubular members under lateral shear loads", J. Constr. Steel Res., 122, 226-237. https://doi.org/10.1016/j.jcsr.2016.03.012. 
  73. Young, B. and Ellobody, E. (2006), "Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns", J. Constr. Steel Res., 62(5), 484-492. https://doi.org/10.1016/j.jcsr.2005.08.004. 
  74. Yun, X. and Gardner, L. (2017), "Stress-strain curves for hot-rolled steels", J. Constr. Steel Res., 133, 36-46. https://doi.org/10.1016/j.jcsr.2017.01.024.