Acknowledgement
The authors sincerely thank the editors of the journal who devoted their attention to the paper, and the referees who contributed their valuable time to the study.
References
- R. A. Abdel-Baky, N. Alluhaibi, A. Ali, and F. Mofarreh, A study on timelike circular surfaces in Minkowski 3-space, International Journal of Geometric Methods in Modern Physics 17 (2020), no. 6, 2050074.
- K. Akutagava and S. Nishikawa, The Gauss map and space-like surfaces with prescribed mean curvature in Minkowski 3-space, Tohoku Math. J. 42 (1990), 67-82.
- A. T. Ali, Spacelike Salkowski and anti-Salkowski curves with timelike principal normal in Minkowski 3-space, Mathematica Aeterna 1 (2011), no. 4, 201-210.
- A. T. Ali, Position vectors of slant helices in Euclidean 3-space, J. of the Egyptian Math. Soc. 20 (2012), 1-6. https://doi.org/10.1016/j.joems.2011.12.005
- A. T. Ali and R. Lopez, Slant helices in Minkowski space E31, J. Korean Math. Soc. 48 (2011), no. 1, 159-167. https://doi.org/10.4134/JKMS.2011.48.1.159
- N. Alluhaibi and R. A. Abdel-Baky, Kinematic Geometry of Timelike Ruled Surfaces in Minkowski 3-Space E31, Symmetry 14 (2022), no. 4, 749.
- J. K. Beem, E. E. Paul and L. E. Kevin, Global Lorentzian Geometry, Routledge, 2017.
- M. Bilici and M. Caliskan, Some new results on the curvatures of the spherical indicatrices of the involutes of a spacelike curve with a spacelike binormal in Minkowski 3-space, MathLAB J. 2 (2019), no. 1, 110-119.
- M. Bilici and M. Caliskan, On the involutes of the space-like curve with a time-like binormal in Minkowski 3-space, Int. Math. Forum 4 (2009), no. 31, 1497-1509.
- M. Bilici, E. Ergun, and M. C aliskan, A new approach to natural lift curves of the spherical indicatrices of timelike Bertrand mate of a spacelike curve in Minkowski 3-Space, International Journal of Mathematical Combinatorics 1 (2015), 35-48.
- M. Bilici and M. C aliskan, Some geometrical calculations for the spherical indicatrices of involutes of a timelike curve in Minkowski 3-Space, Journal of Advances in Mathematics 5 (2014), no. 2, 668-677.
- M. Bilici and M. C aliskan, New characterizations for spherical indicatrices of involutes of a spacelike curve with a timelike binormal in Minkowski 3-space, Journal of Science and Arts 22 (2022), no. 3, 629-638. https://doi.org/10.46939/J.Sci.Arts-22.3-a09
- M. Bilici and S. Palavar, New-type tangent indicatrix of involute and ruled surface according to Blaschke frame in dual space, Maejo Int. J. Sci. Technol. 16 (2022), no. 3, 199-207.
- M. Bilici and M. C aliskan, Some new results on the curvatures of the spherical indicatrices of the involutes of a spacelike curve with a spacelike binormal in Minkowski 3-space, MathLAB Journal 2 (2019), no. 1, 110-119.
- G. S. Birman and K. Nomizu, Trigonometry in Lorentzian Geometry, Ann. Math. Mont. 91 (1984), 534-549.
- B. Bukcu and M. K. Karacan, On the involute and evolute curves of the spacelike curve with a spacelike binormal in Minkowski 3-space, Int. J. Contemp. Math. Sciences 2 (2007), no. 5, 221-232. https://doi.org/10.12988/ijcms.2007.07015
- F. Bulut and M. Bektas, Special helices on equiform differential geometry of spacelike curves in Minkowski space-time, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 (2020), 1045-1056.
- S. Gur and S. Senyurt, Frenet vectors and geodesic curvatures of spheric indicators of Salkowski curve in E31, Hadronic J. 33 (2010), no. 5, 485-512.
- S. Gur and S. Senyurt, Spacelike-timelike involute-evolute curve couple on dual Lorentzian space, J. Math. Comput. Sci. 3 (2013), no. 4, 1054-1075.
- S. Gur Mazlum, Geometric properties of timelike surfaces in Lorentz-Minkowski 3-space, Filomat 37 (2023), no. 17, 5735-5749.
- S. Gur Mazlum, S. Senyurt, and M. Bektas, Salkowski curves and their modified orthogonal frames in E3, Journal of New Theory 40 (2022), 12-26. https://doi.org/10.53570/jnt.1140546
- H. H. Hacisalihoglu, Differential Geometry, ˙Inonu University, Publication of Faculty of Sciences and Arts: Malatya, Turkiye, 1983.
- S. Izumiya and N. Tkeuchi, New special curves and developable surfaces, Turk J. Math. 28 (2004), 153-163.
- S. Kilicoglu and H. Hacisalihoglu, On the b-scrolls with time-like generating vector in 3-dimensional Minkowski space, Beykent University Journal of Science and Technology 3 (2008), no. 2, 55-67.
- M. Kulahci, M. Bektas, and M. Ergut, On harmonic curvatures of a Frenet curve in Lorentzian space, Chaos, Solitons and Fractals 41 (2009), 1668-1675. https://doi.org/10.1016/j.chaos.2008.07.013
- Y. Li, M. T. Aldossary, and R. A. Abdel-Baky, Spacelike circular surfaces in Minkowski 3-Space, Symmetry 15 (2023), no. 1, 173.
- Y. Li, S. Gur Mazlum, and S. Senyurt, The Darboux trihedrons of timelike surfaces in the Lorentzian 3-space, International Journal of Geometric Methods in Modern Physics 2022 (2022), 1-35.
- Y. Li, Z. Chen, S. H. Nazra, and R. A. Abdel-Baky, Singularities for Timelike Developable Surfaces in Minkowski 3-Space, Symmetry 15 (2023), no. 2, 277.
- Y. Li, F. Mofarreh, S. Dey, S. Roy, and A. Ali, General relativistic space-time with η1-Einstein metrics, Mathematics 10 (2022), no. 14, 2530.
- R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, International Electronic Journal of Geometry 7 (2014), 44-107. https://doi.org/10.36890/iejg.594497
- J. Monterde, Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion, Computer Aided Geometric Design 26 (2009), no. 3, 271-278. https://doi.org/10.1016/j.cagd.2008.10.002
- B. O'Neill, Semi-Riemannian Geometry with Applications to Rrelativity, Academic Press: London, England, 1983.
- M. Ozdemir, Diferansiyel Geometri, Altin Nokta Printing and Distribution, Izmir, Turkiye, 2020.
- J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, Tokyo, Japanese, 1994.
- E. Salkowski, Zur transformation von raumkurven, Mathematische Annalen 66 (1909), no. 4, 517-557. https://doi.org/10.1007/BF01450047
- M. Senatalar, Differential Geometry (Curves and Surfaces Theory), ˙Istanbul State Engineering and Architecture Academy Publications: Istanbul, Turkiye, 1978.
- S. Senyurt and S. Gur, Spacelike surface geometry, International Journal of Geometric Methods in Modern Physics 14 (2017), 689-700.
- S. Senyurt, S. Gur, and E. Ozyilmaz, The Frenet vectors and the geodesic curvatures of spherical indicatrix of the timelike Salkowski curve in Minkowski 3-space, Journal of Advanced Research in Dynamical and Control Systems 7 (2015), no. 4, 20-42.
- S. Senyurt and E. Kemal, Smarandache curves of spacelike anti-Salkowski curve with a spacelike principal normal according to Frenet frame, Gumushane University, Journal of Science and Technology 10 (2020), 251-260.
- S. Senyurt and B. Ozturk, Smarandache curves of Salkowski curve according to Frenet frame, Turkish Journal of Mathematics and Computer Science 10 (2018), 190-201.
- D. J. Struik, Lectures on Classical Differential Geometry, Courier Corporation, 1961.
- H. H. Ugurlu, On the geometry of time-like surfaces, Communications, Faculty of Sciences, University of Ankara, Al Series 46 (1997), 211-223.
- H. H. Ugurlu and A. C aliskan, Darboux Ani Donme Vektorleri ile Spacelike ve Timelike Yuzeyler Geometrisi, Celal Bayar University Press, Manisa, Turkiye, 2012.
- H. H. Ugurlu and A. Topal, Relation between Darboux instantaneous rotation vectors of curves on time-like surface, Mathematical and Computational Applications 1 (1996), 149-157. https://doi.org/10.3390/mca1020149
- J. Walrave, Curves and surfaces in Minkowski space, Ph.D. Thesis, Katholieke Universiteit, Leuven, Belgium, 1995.
- I. V. Woestijne, Minimal surfaces of the 3-dimensional Minkowski space, Geometry and Topology of Submanifolds: II, Word Scientific, Singapore, 1990.
- N. Yuksel, B. Saltik, and E. Damar, Parallel curves in Minkowski 3-space, Gumushane University Journal of Science and Technology 12 (2014), no. 2, 480-486.