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SOME SPECTRAL AND SCATTERING PROPERTIES OF

GENERALIZED EIGENPARAMETER DEPENDENT

DISCRETE TRANSMISSION STURM-LIOUVILLE EQUATION

Güher Gülçehre Özbey, Güler Başak Öznur, Yelda Aygar ∗, and
Turhan Köprübaşı

Abstract. In this study, we set a boundary value problem (BVP) con-

sisting of a discrete Sturm-Liouville equation with transmission condition
and boundary conditions depending on generalized eigenvalue parameter.

Discussing the Jost and scattering solutions of this BVP, we present scat-
tering function and find some properties of this function. Furthermore,

we obtain resolvent operator, continuous and discrete spectrum of this

problem and we give an valuable asymptotic equation to get the proper-
ties of eigenvalues. Finally, we give an example to compare our results

with other studies.

1. Introduction

We consider a discrete Sturm-Liouville BVP given by

(1) an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N\ {m0 − 1,m0,m0 + 1}

with the boundary condition

(2)

p∑
k=0

(y1γk + y0βk)λ
k = 0

and the transmission conditions

ym0+1 = ζ1ym0−1(3)

ym0+2 = ζ2ym0−2, ζ1, ζ2 ∈ R, ζ1ζ2 ̸= 0.

Here λ = 2 cos z is an eigenvalue parameter, γk, βk, k = 0, 1, . . . , p are real
numbers such that γmβn − γnβm ̸= 0; m,n ∈ N ∪ N0, for n < m ≤ p and
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{an}n∈N∪{0}, {bn}n∈N are real sequences satisfying the following condition

(4)
∑
n∈N

n (|1− an|+ |bn|) <∞.

Throughout this work, we will assume that an ̸= 0 for all n ∈ N ∪ {0}.
Because of the condition (3), BVP (1)-(3) is a kind of discontinuous boundary
value problem. Discontinuous boundary value problems have great applications
in various branches of natural sciences especially mathematical physics and
quantum mechanics. Sturm-Liouville problems both classical and discrete cases
with spectral boundary conditions are also seen in various fields of sciences.
Spectral and scattering properties for these problems have been investigated
by many scholars for years (see [9, 10, 7, 30, 31, 20, 29, 18, 22, 16, 13, 17, 25, 3]
and the references there in). To study discontinuous boundary value problems
of such problems, some conditions under titles interface conditions, point in-
teractions, impulsive conditions, jump conditions and transmission conditions
are imposed in the discontinuous point or points. Among these discontinuous,
transmission (or impulsive) difference equations have been discussed in many
references and a large number of authors surveyed the spectral theory of these
equations also in recent years scattering properties of such equations have re-
ceived a lot of attention [21, 1, 36, 6, 4, 15, 34, 32, 2, 28, 33, 5, 14, 8, 23].
Because problems with discontinuous have also been great considered in many
fields of real-world problems such as earthquakes, a mass-spring-damper system
with short-term perturbations, finance and pharmacotherapy [26, 35, 11, 37].

In this study, we initiate some spectral and scattering properties of the BVP
(1)-(3) which consist scattering solutions, Jost solution, scattering function and
its properties, resolvent operator, discrete spectrum, continuous spectrum and
a useful asymptotic formula. Differently other studies in literature, the spe-
cific feature of this paper is the presence of the spectral parameter not only in
the difference equation but also it is in the boundary condition at generalized
polynomial form at the same time with transmission condition together. We
combine impulsive condition and boundary conditions depending on generalized
eigenvalue parameter with discrete Sturm-Liouville equation. This investiga-
tion is the more general form of the studies [6, 4, 34, 33]. On the other hand,
[24] is a study about the spectral analysis of BVP with this kind of bound-
ary conditions in continuous case, but it is the first which presents scattering
properties of a boundary value problem consisting of boundary conditions de-
pending on generalized spectral parameter also it is the first in discontinuity
case on the aspect of spectral and scattering analysis.

The outline of this paper is as follows: In Section 2, we give some basic
notations and definitions and we get the Jost solution of BVP (1)-(3). Also,
we prove an auxiliary lemma and theorem to use next sections. In Section 3,
we find the scattering and Jost functions of (1)-(3). In Section 4, we obtain
resolvent operator, continuous spectrum and discrete spectrum of the problem.
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Also, we give an important asymptotic equation in this section. Finally, we
conclude our paper with a useful example.

2. Preliminaries

Let us define two semi-strips

D0 :=

{
z ∈ C : Im z > 0,−π

2
≤ Re z ≤ 3π

2

}
, D := D0 ∪

[
−π
2
,
3π

2

]
.

Throughout the paper, we assume that P (z) = {Pn(z)} and Q(z) = {Qn(z)}
are the fundamental solutions of (1) for z ∈ D, λ = 2 cos z and n ∈ N ∪ {0},
satisfying the initial conditions

P0(z) = 0, P1(z) = 1

and

Q0(z) =
1

a0
, Q1(z) = 0,

respectively [12]. For each n ≥ 0, Pn(z) is a polynomial of degree (n− 1) and
Qn(z) is a polynomial of degree (n− 2).

Definition 2.1. The Wronskian of two solutions y = {yn(z)} and u =
{un(z)} of (1) is defined by

W [y, u] = an [yn(z)un+1(z)− yn+1(z)un(z)]

for n ∈ N ∪ {0}.

It is easy to see that the Wronskian is independently of n. Moreover, Pn(z)
and Qn(z) are linear independent solutions of (1), because W [P,Q] = −1 for
all z ∈ C and these solutions are entire functions with respect to z. Note
that, we can write the other solution ψn(z) of (1) as a linear combination of
fundamental solutions. We can express this solution as

(5) ψn(z) = −Pn(z)

p∑
k=0

βkλ
k + a0Qn(z)

p∑
k=0

γkλ
k, n = 0, 1, ...,m0 − 1.

On the other hand, we show by e(z) = {en(z)} , n = m0 + 1,m0 + 2, ... the
bounded solution of (1) satisfying the condition

lim
n→∞

e−inzen(z) = 1, z ∈ D.

The solution e(z) is represented by

en(z) = ρne
inz

(
1 +

∞∑
m=1

Anme
imz

)
, n = m0 + 1,m0 + 2, ...
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in [26], where ρn and Anm are expressed in terms of the sequences {an} and
{bn} as

ρn :=

∞∏
k=n

a−1
k ,

An1 := −
∞∑

k=n+1

bk,

An2 :=

∞∑
k=n+1

1− a2k + bk

∞∑
p=k+1

bp

 ,

An,m+2 := An+1,m +

∞∑
k=n+1

{(
1− a2k

)
Ak+1,m − bkAk,m+1

}
for n ∈ N ∪ {0} and m ∈ N. The function en(z) is analytic according to z in
C+ := {z ∈ C : Im z > 0}, continuous in C+ := {z ∈ C : Im z ≥ 0} and 2π
periodic.
The equation (1) also has an unbounded solution. We will show this unbounded
solution by ĕn(z) for n = m0 + 1,m0 + 2, ... satisfying limn→∞ einz ĕn(z) = 1,
z ∈ C+. It is clear from the definitions of en(z), ĕn(z) and the definition of
Wronskian that

(6) W [en(z), ĕn(z)] = −2i sin z

for n = m0 + 1,m0 + 2, ... and z ∈ D\{0, π}.
Now, we define the following solution of BVP

(7) En(z) :=

{
α(z)Pn(z) + c(z)Qn(z), n = 0, 1, 2, ...,m0 − 1

en(z), n = m0 + 1,m0 + 2, ...

for z ∈ D. If we apply the transmission conditions (3) to this solution, we can
write

em0+1(z)

ζ1
= α(z)Pm0−1(z) + c(z)Qm0−1(z),

(8)
em0+2(z)

ζ2
= α(z)Pm0−2(z) + c(z)Qm0−2(z).

By using (8), we obtain the coefficients α(z) and c(z) as

(9) α(z) = −am0−2

ζ1ζ2
{ζ1em0+2(z)Qm0−1(z)− ζ2em0+1(z)Qm0−2(z)}

and

(10) c(z) =
am0−2

ζ1ζ2
{ζ1em0+2(z)Pm0−1(z)− ζ2em0+1(z)Pm0−2(z)}

for z ∈ D. The function E(z) = {En(z)} is called the Jost solution of BVP
(1)-(3).
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Corollary 2.2. Since Pn(z) = Pn(−z) and Qn(z) = Qn(−z) for z ∈ D,
then we obtain that

α(−z) = α(z), c(−z) = c(z).

It is evident from the definitions of Wronskian and en(z) that

W [en(z), en(−z)] = −2i sin z

for all z ∈
[
−π
2
,
3π

2

]
\{0, π}. Next, we define the another solution F (z) =

{Fn(z)} of (1)-(3) by

(11) Fn(z) :=

{
ψn(z), n = 0, 1, 2, ...,m0 − 1

d(z)en(z) + f(z)en(−z), n = m0 + 1,m0 + 2, ...

for z ∈
[
−π
2
,
3π

2

]
\{0, π}. Using (3), we get that

(12) d(z) = − am0+1

2i sin z
{ζ1em0+2(−z)ψm0−1(z)− ζ2em0+1(−z)ψm0−2(z)}

and

(13) f(z) =
am0+1

2i sin z
{ζ1em0+2(z)ψm0−1(z)− ζ2em0+1(z)ψm0−2(z)}

for z ∈
[
−π
2
,
3π

2

]
\{0, π}.

Corollary 2.3. The coefficients d(z) and f(z) satisfy the following rela-
tionship

f(z) = d(−z) = d(z)

for z ∈
[
−π
2
,
3π

2

]
\{0, π}.

Theorem 2.4. The coefficient f(z) is not equal to zero for all z ∈
[
−π
2
,
3π

2

]
\{0, π}.

Proof. Let us suppose that there exists an element z0 ∈
[
−π
2
,
3π

2

]
\{0, π}

such that f(z0) = 0. According to Corollary 2.3, we get f(z0) = d(z0) = 0. In
this instance, it gives us Fn(z0) = 0 for all n ∈ N ∪ {0}, but this is a trivial
solution of (1)-(3). It says that there is a contradiction, so f(z) ̸= 0 for all

z ∈
[
−π
2
,
3π

2

]
\{0, π}.

Lemma 2.5. The Wronskian of the solutions En(z) and Fn(z) is given by

W [En(z), Fn(z)] =


(am0−2)2i sin z

(am0+1)ζ1ζ2
f(z), n = 0, 1, 2, ...,m0 − 1

−2i sin zf(z), n = m0 + 1,m0 + 2, ...
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for z ∈
[
−π
2
,
3π

2

]
\{0, π}.

Proof. By using the definition of Wronskian for n = 0, 1, 2, ...,m0 − 1, we
can write

W [En(z), Fn(z)] = an {En(z)Fn+1(z)− Fn(z)En+1(z)}

= am0+1 {Em0+1(z)Fm0+2(z)− Fm0+1(z)Em0+2(z)}
= f(z)am0+1 {em0+1(z)em0+2(−z)− em0+1(−z)em0+2(z)} .

Since W [en(z), en(−z)] = −2i sin z, we get

W [En(z), Fn(z)] = −2i sin zf(z).

Similarly, if we apply the definitions En(z), α(z), c(z), Fn(z) and f(z) given in
(7), (9), (10), (11) and (13), respectively, we find

W [En(z), Fn(z)] =
am0−2

am0+1

2i sin z

ζ1ζ2
f(z)

for n = 0, 1, 2, ...,m0 − 1. This completes the proof.

3. Jost Solution and Scattering Function

In this section, we give the Jost function, scattering function and main
properties of scattering function. Now, we will define the Jost function J of
(1)-(3) by applying the boundary condition (2) to the Jost solution En(z) of
(1)-(3) and we write

J(z) :=

p∑
k=0

(E1γk + E0βk)λ
k

=

p∑
k=0

(
α(z)γk +

c(z)

a0
βk

)
λk.

It is obvious that

J(−z) =
p∑

k=0

(
α(−z)γk +

c(−z)
a0

βk

)
λk.

Furthermore, similarly to Sturm-Liouville equation, the function J(z) is ana-
lytic in C+ and continuous in C+.

Lemma 3.1. The Jost function J can be expressed as a multiple of f(z)

J(z) = −am0−2

am0+1

2i sin z

a0ζ1ζ2
f(z)

for z ∈
[
−π
2
,
3π

2

]
\{0, π}.
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Proof. It follows from (5) and (13) that

f(z) =
am0+1

2i sin z

ζ1ζ2
am0−2

{
−c(z)

p∑
k=0

βkλ
k − a0α(z)

p∑
k=0

γkλ
k

}

= −am0+1

am0−2

ζ1ζ2
2i sin z

{
p∑

k=0

c(z)βkλ
k +

p∑
k=0

a0α(z)γkλ
k

}

= −am0+1

am0−2

ζ1ζ2
2i sin z

a0J(z)(14)

for z ∈
[
−π
2
,
3π

2

]
\{0, π}. It completes the proof of Lemma 3.1.

Definition 3.2. The function

S(z) :=
J(z)

J(z)
, z ∈

[
−π
2
,
3π

2

]
\{0, π}

is called the scattering function of BVP.

It is clear from Lemma 3.1 and Definition 3.2 that scattering function can
be also written in the form of the coefficient f(z) as

(15) S(z) =
J(−z)
J(z)

= −f(−z)
f(z)

, z ∈
[
−π
2
,
3π

2

]
\{0, π}.

Theorem 3.3. For all z ∈
[
−π
2
,
3π

2

]
\{0, π}, the scattering function S(z)

satisfies

S(−z) = S−1(z) = S(z), | S(z) |= 1.

Proof. From the Definition 3.2, we have

S(−z) = J(z)

J(−z)
and

S(z) =
J(−z)
J(z)

.

Since d(−z) = d(z) and d(−z) = d(z), we obtain

S(−z) = S−1(z) = S(z).

Also, since | S(z) |2= S(z)S(z), the equation (15) gives us

| S(z) |= J(z)

J(−z)
J(−z)
J(z)

= 1

for all z ∈
[
−π
2
,
3π

2

]
\{0, π}. It completes the proof.
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4. Resolvent Operator, Continuous and Discrete Spectrum of BVP

In this part, we try to investigate resolvent operator, continuous spectrum
and discrete spectrum of related BVP. Furthermore, we present an important
asymptotic equation for f(z). For all z ∈ D, we will define the following solution
G(z) = {Gn(z)}

(16) Gn(z) :=

{
ψn(z), n = 0, 1, 2, ...,m0 − 1

k(z)en(z) + q(z)ĕn(z), n = m0 + 1,m0 + 2, ...

By using transmission conditions (3) for G(z), we find the coefficients k(z) and
q(z)

k(z) = − am0+1

2i sin z
{ζ1ψm0−1(z)ĕm0+2(z)− ζ2ψm0−2(z)ĕm0+1(z)}

and

q(z) =
am0+1

2i sin z
{ζ1ψm0−1(z)em0+2(z)− ζ2ψm0−2(z)em0+1(z)}

for all z ∈ D. Note that, for all z ∈
[
−π
2
,
3π

2

]
\{0, π}

f(z) = q(z).

Also, using (7) and (16), we get

W [En(z), Gn(z)] =


(am0−2)2i sin z

(am0+1)ζ1ζ2
f(z), n = 0, 1, 2, ...,m0 − 1

−2i sin zf(z), n = m0 + 1,m0 + 2, ...

for z ∈ D.

Corollary 4.1. For all z ∈
[
−π
2
,
3π

2

]
\{0, π}, it is clear that

W [E(z), F (z)] =W [E(z), G(z)].

Theorem 4.2. The resolvent operator of BVP is defined by

Rλgn :=

∞∑
k=1

Rnk(z)gk, gk ∈ l2(N),

where

Rnk(z) =


−Gk(z)En(z)

W [Ek, Gk]
, k ≤ n

−Gn(z)Ek(z)

W [Ek, Gk]
, k > n

is the Green function of (1)-(3) for z ∈ D\{0, π}, f(z) ̸= 0 and k, n ̸= m0.
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Proof. We need to solve the following equation to find the resolvent operator
of BVP

(17) ∇ (an∆yn) + hnyn − λyn = g(t, z), gn ∈ l2 (N) ,

where hn = an−1+an+ bn, ∇ is the backward difference operator and ∆ is the
forward difference operator defined by ∇yn = yn − yn−1 and ∆yn = yn+1 − yn,
respectively. Since En(z) and Gn(z) are fundamental solutions of (1)-(3), we
can write the general solution of (17) as

(18) yn(z) = snEn(z) + tnGn(z),

where sn, tn are coefficients and they are different from zero. Using the method
of variation of parameters for k ̸= m0, we obtain sn and tn by

(19) sn = −
n∑

k=1

Gkgk
W [E,G]

,

(20) tn = −
∞∑

k=n+1

Ekgk
W [E,G]

.

It follows from (18), (19) and (20) that the Green function Rnk(z) of (1)-(3) is
defined in Theorem 4.2. Also, we obtain the resolvent operator of BVP by the
help of the Green function.

Now, we can give the set of eigenvalues of (1)-(3) by using the definition of
eigenvalues [27] and Theorem 4.2 as

σd := {λ ∈ C : λ = 2 cos z, z ∈ D0, f(z) = 0}.

Theorem 4.3. Under the condition (4), f(z) satisfies the following asymp-
totic equation for z ∈ D

f(z) = eiz(5−p) [A+ o(1)] , | z |→ ∞, A ̸= 0,

where

(21) A = −ζ1am0+1βpρm0+1

a1a2...am0−3

{
am0+1

am0−2
− ζ2
ζ1

}
.

Proof. As mentioned earlier, Pn(z) is a polynomial of degree (n− 1) and
Qn(z) is a polynomial of degree (n− 2) with regard to λ. Hence, by using (5),
we can obtain

(22) lim
|z|→∞

{
ψn(z)e

iz(n−1+p)
}
= − Bp

a1...an−1

and

(23) lim
|z|→∞

{
en(z)e

−inz
}
= ρn
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for z ∈ D and n = 0, 1, 2, ...,m0 − 1, where ρn := (
∏∞

k=n ak)
−1
. It follows from

(13), (22) and (23) that

f(z) =
am0+1

2i sin z
[ζ1ψm0−1(z)e

iz(m0−2+p)em0+2(z)e
−iz(m0+2)zeiz(4−p)

−ζ2ψm0−2(z)e
iz(m0−3+p)em0+1(z)e

−iz(m0+1)zeiz(4−p)]

and if the last equality is written in limit form and necessary adjustments are
made, we find

lim
|z|→∞

{
f(z)e−iz(5−p)

}
= −ζ1am0+1βpρm0+1

a1a2...am0−3

{
am0+1

am0−2
− ζ2
ζ1

}
lim

|z|→∞

1

e2iz − 1
.

Last equation gives that

lim
|z|→∞

{
f(z)e−iz(5−p)

}
= A,

where A is given in equation (21) for all z ∈ D. It completes the proof of
Theorem.

Theorem 4.4. Assume (4). Then the continuous spectrum of the operator
L generated by (1)-(3) is [−2, 2], i.e., σc (L) = [−2, 2] .

Proof. Let L1 and L2 denote difference operators generated in l2 (N) by the
following difference equations

(l1y) := yn−1 + yn+1, n ∈ N\{m0 − 1,m0 + 1}
and

(l2y) := (an−1 − 1) yn−1+ bnyn+(an − 1) yn+1, n ∈ N\{m0−1,m0,m0+1},
respectively, with the boundary condition (2). It is evident that L = L1 + L2

and L2 is a compact in l2 (N) under the assumption (4) [27]. We can also write
the operator L1 by the sum of two operators L3 and L4, i.e., L1 = L3 + L4,

where L3 is a self-adjoint operator with σc (L3) = [−2, 2] and defined by the
difference expression l1 and the boundary condition (2). On the other hand,
L4 is a finite dimensional operator in l2 (N) . Since L4 is a finite dimensional
operator in l2 (N) , it is also compact operator. It gives that the sum of two
compact operators L2+L4 is a compact operator, too. It follows from that L =
L3 + L4 + L2 and by using the Weyl Theorem [19] of a compact perturbation,
we get σc (L3) = σc (L) = [−2, 2] .

5. An Example

In this section, we will conclude the paper by giving a special case of (1)-
(3). This special case introduces our example and it illustrates our theoretical
findings.
Let us consider the following discrete transmission problem

yn−1 + yn+1 = 2 cos zyn, n ∈ N\{2, 3, 4}
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(24)

p∑
k=0

(y1γk + y0βk)λ
k = 0

y4 = ζ1y2

y5 = ζ2y1,

where ζ1, ζ2, γk, βk, k = 0, 1, ..., p are real numbers, ζ1ζ2 ̸= 0. It can be easily
seen that (24) is a special case of (1)-(3), i.e., m0 = 3, a(t) ≡ 1 and b(t) ≡ 0.
It is obvious that en(z) = einz and the fundamental solutions Pn(z) and Qn(z)
of (1)-(3) have the following values for n = 0, 1, 2

P0(z) = 0, P1(z) = 1, P2(z) = λ

Q0(z) =
1

a0
, Q1(z) = 0, Q2(z) = − 1

a0
.

Moreover, by using (7) and (13), we find f(z), Jost solution and scattering
function of (24) as
(25)

f(z) =
a4

2i sin z

{
ζ1

(
−

p∑
k=0

βkλ
k+1 −

p∑
k=0

γkλ
k

)
e5iz + ζ2

(
p∑

k=0

βkλ
k

)
e4iz

}
,

En(z) =

{
α(z)Pn(z) + c(z)Qn(z), n = 0, 1, 2

einz, n = 4, 5, ...

and

S(z) = e−8iz

[
ζ1ψ2(z)e

−iz − ζ2ψ1(z)

ζ1ψ2(z)eiz − ζ2ψ1(z)

]
,

respectively. Also continuous spectrum of the problem (24) is [−2, 2] from
Theorem 4.4. To get the eigenvalues of (24), it is necessary for us to find the
zeros of f(z) for z ∈ D0. Because from the definition of eigenvalues, we can
write

σd := {λ ∈ C : λ = 2 cos z, z ∈ D0, f(z) = 0}

for this problem, where f(z) is given by (25). If f(z) = 0, then we write

(26) λeiz + eiz
∑p

k=0 γkλ
k∑p

k=0 βkλ
k
=
ζ2
ζ1

for z ∈ D0. We can examine the following case for the equation (26). Let
assume p = 1 and ζ2 = Bζ1, B ∈ R in (26). By using (26), we get the same
results as in [4].
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