DOI QR코드

DOI QR Code

Codes and standards on computational wind engineering for structural design: State of art and recent trends

  • Luca Bruno (Department of Architecture and Design, Politecnico di Torino) ;
  • Nicolas Coste (Optiflow Company) ;
  • Claudio Mannini (Department of Civil and Environmental Engineering, University of Florence) ;
  • Alessandro Mariotti (Department of Civil and Industrial Engineering, University of Pisa) ;
  • Luca Patruno (Department of Civil, Chemical, Environmental, and Materials Engineering) ;
  • Paolo Schito (Department of Mechanical Engineering, Politecnico di Milano) ;
  • Giuseppe Vairo (Department of Civil Engineering and Computer Science, University of Rome "Tor Vergata")
  • 투고 : 2022.10.09
  • 심사 : 2023.07.05
  • 발행 : 2023.08.25

초록

This paper first provides a wide overview about the design codes and standards covering the use of Computational Wind Engineering / Computational Fluid Dynamics (CWE/CFD) for wind-sensitive structures and built environment. Second, the paper sets out the basic assumptions and underlying concepts of the new Annex T "Simulations by Computational Fluid Dynamics (CFD/CWE)" of the revised version "Guide for the assessment of wind actions and effects on structures" issued by the Advisory Committee on Technical Recommendations for Constructions of the Italian National Research Council in February 2019 and drafted by the members of the Special Interest Group on Computational Wind Engineering of the Italian Association for Wind Engineering (ANIV-CWE). The same group is currently advising UNI CT021/SC1 in supporting the drafting of the new Annex K - "Derivation of design parameters from wind tunnel tests and numerical simulations" of the revised Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions. Finally, the paper outlines the subjects most open to development at the technical and applicative level.

키워드

과제정보

The activity described in this paper was carried out under the umbrella of the Italian Association for Wind Engineering (ANIV): the authors acknowledge its support. Davide Fransos and Andrea Lo Giudice, former members of ANIV-CWE, contributed in the past to the group activities on CWE best practices and codification: the authors warmly thank them. The Annex T of the Guide CNR-DT 207-R1/2018 was strongly encouraged by Giovanni Solari and Franco Maceri: the authors gratefully acknowledge their stimuli. The Annex K of Eurocode 1-Part 1-4 has been first envisioned by Francesco Ricciardelli as member of the Project Team SC1.T3: EN 1991-1-4 (Wind) - Mandate M/515 Phase 2 tasks for the development of the 2nd generation of EN Eurocodes: the authors are grateful for his proposal to support the drafting of the part devoted to CWE. The figures included in the paper partially refers to data, results and studies obtained by Others. Three nomenclatures are used in the figure captions: i. if data are gathered, analyzed and reworked by the Authors, hence the term "source" is used; ii. if results are taken form published scientific and technical literature, hence the term "after" accompanied by a bibliographic reference is used; iii. if results are taken by unpublished industrial studies, the term "Credits:" accompanied by the name of the Company owner of the rights is used. It will be evident from the reference list that the authors are indebted to a large number of industrial and academic colleagues for much of the information that is included in this paper, and it is simply not possible to name them all. Their indirect valuable contribution is gratefully acknowledged.

참고문헌

  1. Abu-Zidan, Y., Mendis, P. and Gunawardena, T. (2021) "Optimising the computational domain size in CFD simulations of tall buildings", Heliyon, 7(4), e06723. https://doi.org/10.1016/j.heliyon.2021.e06723. 
  2. AIAA (1998) Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, AIAA G-077-1998. https://doi.org/10.2514/4.472855.001. 
  3. AIJ-GWL (2005) "AIJ Guide for Numerical Prediction of Wind Loads on Buildings", Architectural Institute of Japan (AIJ), Tokyo, Japan. 
  4. ASCE/SEI 49-12 (1997) Wind Tunnel Testing for Buildings and Other Structures, American Society of Civil Engineers (ASCE). 
  5. ASCE 7-10 (2010) Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers (ASCE). 
  6. ASCE 7-22 (2022) Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers (ASCE). 
  7. ASCE (1985), Aerodynamics Committee, Proposed Manual of Practice for Wind Tunnel Testing of Buildings and Structures, ASCE Spring Convention, Denver, Colorado. 
  8. Ballio, G. and Solari, G. (1988) "The new Italian recommendation for wind loads on structures: Basic assumptions and critical considerations", J. Wind Eng. Ind. Aerod, 30(1-3), 123-132. https://doi.org/10.1016/0167-6105(88)90077-3. 
  9. BARC benchmark database, www.aniv-iawe.org/barc-data/ 
  10. Bearman, P.W. and Morel, T. (1983), "Effect of free stream turbulence on the flow around bluff bodies", Prog. Aerosp. Sci., 20(2-3), 97-123. https://doi.org/10.1016/0376-0421(83)90002-7. 
  11. Belostotsky, A.M., Akimov, P.A. and Afanasyeva, I.N. (2019), "About 'Legitimization' of numerical modelling of wind impacts on buildings and structures", Int. J. Comp. Civil Struct. Eng., 15(4), 14-24. https://doi.org/10.22337/2587-9618-2019-15-4-14-24. 
  12. Bertani, G. Patruno, L. and Gandia, F.A (2022), "Low-fidelity simulations in Computational Wind Engineering: shortcomings of 2D RANS in fully separated flows", Wind Struct., 34, 499-510. https://doi.org/10.12989/was.2022.34.6.499. 
  13. Blocken, В. (2014), "50 years of Computational Wind Engineering: Past, present and future", J. Wind Eng. Ind. Aerod., 129, 69-102. https://doi.org/10.1016/j.jweia.2014.03.008. 
  14. Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: A computational study", J. Wind Eng. Ind. Aerod., 98, 263-276. https://doi.org/10.1016/j.jweia.2009.10.005. 
  15. Bruno, L. and Oberto, D. (2022), "Effects of cell quality in grid boundary layer on the simulated flow around a square cylinder", Comp. Fluids, 238, 10535. https://doi.org/10.1016/j.compfluid.2022.105351. 
  16. Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005. 
  17. Cammelli, S., Dorigatti, F., Hackett, D., Ping To, A. and Vazquez, B. (2022), A Position Paper on Experimental and Computational Methods in Wind Engineering, UK Wind Engineering Society (WES), London. 
  18. Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. (1988), Spectral Methods in Fluid Dynamics. Part of the book series: Scientific Computation (SCIENTCOMP), Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-84108-8. 
  19. Castro, I.P. and Graham, J.M.R. (1999), "Numerical wind engineering: the way ahead?", Proc. Inst. Civil Eng. - Struct. Build., 134(3), 275-277. 10.1680/istbu.1999.31569. 
  20. Cermak, J.E. (1975), "Application of Fluid Mechanics to Wind Engineering", Freeman Scholar Lecture, J. Fluid Eng. ASME, 97(1). https://doi.org/10.1115/1.3447225. 
  21. Choi, C.K. and Kwon, D.W. (1998), "Wind tunnel blockage effects on aerodynamic behavior of bluff body", Wind Struct., 1(4), 351-364. https://doi.org/10.12989/was.1998.1.4.351. 
  22. CNR-DT 207/2008 (2008) Guide for the Assessment of Wind Actions and Effects on Structures, National Research Council of Italy - Advisory Committee on Technical Recommendations for Construction; Rome, Italy. 
  23. CNR-DT R1-207/2018 (2018) Guide for the Assessment of Wind Actions and Effects on Structures, National Research Council of Italy - Advisory Committee on Technical Recommendations for Construction; Rome, Italy. 
  24. Dorney, S.M. (2003), "CFD Process pre- and post-processing automation in support of space propulsion", 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, 20-23 July 2003. 
  25. EN 1991-1-4 (2005), Eurocode 1: Actions on Structures, Part 1-4: General Actions, Wind Actions, European Committee for Standardization (CEN); Brussels, Belgium. 
  26. ERCOFTAC (2000), Best Practices Guidelines for Industrial Computational Fluid Dynamics, Version 1.0, January 2000.
  27. Ercoftac QNET-CFD Wiki, http://qnetercoftac.cfms.org.uk/w/index.php/Main_Page. 
  28. Ferziger, J.H. (1993), "Estimation and reduction of numerical error" FED vol. 158, In: Proceedings of the Symposium on Quantification of Uncertainty in Computational Fluid Dynamics, ASME Fluid Engineering Division, Summer Meeting, Washington DC, June, 1-8. 
  29. Fransos, D. and Lo Giudice, A. (2015), "On the use of computational simulation in the determination of wind loads on structures: design experiences and food for thought", Proceedings of the XXV Congress CTA, Salerno, October. 
  30. Hirsch, C. (2007), Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Elsevier. https://doi.org/10.1016/B978-0-7506-6594-0.X5037-1. 
  31. Holmes, J.D. and Carpenter, P. (1990), "The effect of Jensen number variations on the wind loads on a low-rise building", J. Wind Eng. Ind. Aerod., 36, 1279-1288. https://doi.org/10.1016/0167-6105(90)90124-U. 
  32. Houghtno, E.L. and Carruthers, N.B. (1976), Wind Forces on Buildings and Structures: An Introduction. John Wiley & Sons Inc. 
  33. ISO 4354:2009 (2009), Wind Actions on Structures. ISO/TC 98/SC 3 Loads, Forces and Other Actions. International Organization for Standardization, Geneva, Switzerland. 
  34. Italian National Research Council (1985), CNR10012/85: Guide for the Assessment of Wind Actions on Buildings, Rome, 1985. 
  35. Lamberti, G. and Gorle, C. (2020). "Sensitivity of LES predictions of wind loading on a high-rise building to the inflow boundary condition", J. Wind Eng. Ind. Aerod., 206, 104370. https://doi.org/10.1016/j.jweia.2020.104370. 
  36. Leschziner, M.A. (1990), "Modelling engineering flows with Reynolds stress turbulence closure", J. Wind Eng. Ind. Aerod., 35, 21-47. 10.1016/0167-6105(90)90209-U. 
  37. Liu, H. (1990) Wind Engineering: A Handbook for Structural Engineering. Pearson Education. 
  38. Menter, F.R. and Egorov, Y. (2010), "The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description", Flow, Turbulence Combustion, 85, 113-138. 10.1007/s10494-010-9264-5. 
  39. Mod2-SP20.13330.2016 (2019) Izmenenie No. 2 k SP 20.13330.2016 "SNIP 2.01.07-85* Nagruzki i vozdejstvija" [The Second Modification to SP 20.13330.2016 "SNIP 2.01.07-85* Loads and impacts"], Ministry of Construction and Housing and Communal Services of the Russian Federation, Moscow, Russian Federation. 
  40. Moukalled, F., Mangani, L. and Darwish, M. (2016), The Finite Volume Method in Computational Fluid Dynamics. Springer, Cham. 10.1007/978-3-319-16874-6. 
  41. Murakami, S. (1990), "Computational wind engineering", J. Wind Eng. Ind. Aerod., 36, 517-538. https://doi.org/10.1016/0167-6105(90)90335-A. 
  42. Murakami, S. (1997), "Current status and future trends in computational wind engineering", J. Wind Eng. Ind. Aerod., 67-68, 3-34. 10.1016/S0167-6105(97)00230-4. 
  43. Murakami, S. (1998), "Overview of turbulence models applied in CWE-1997", J. Wind Eng. Ind. Aerod., 74-76, 1-24. https://doi.org/10.1016/S0167-6105(98)00004-X. 
  44. Murakami, S. (1993), "Computational Wind Engineering 1", Proceedings of the 1st International Symposium on Computational Wind Engineering (CWE 92), Tokyo, Japan, August. https://doi.org/10.1016/C2009-0-10273-8. 
  45. Noda, H. and Nakayama, A. (2003), "Free-stream turbulence effects on the instantaneous pressure and forces on cylinders of rectangular cross section", Experiments Fluids, 34(3), 332-344. https://doi.org/10.1007/s00348-002-0562-0. 
  46. NF EN 1991-1-4/NA:2008-03 (2008) French National Annex to EN 1991-1-4:2005 - General actions - Wind actions. Association Francaise de Normalisation (AFNOR), La Plaine Saint-Denis, France. 
  47. NTC-2018 (2018) Italian Building Code, Italian Ministry of Infrastructure, Rome, Italy. 
  48. Oberkampf, W.L., Trucano, T.G. and Hirsch, C. (2004), "Verification, validation, and predictive capability in computational engineering and physics", Appl. Mech. Rev., 57(5), 345-384. https://doi.org/10.1115/1.1767847. 
  49. Oberkampf, W.L. and Trucano, T.G. (2002), Verification and Validation in Computational Fluid Dynamics, Sandia National Laboratories Report, SAND2002-0529. 
  50. Patruno, L. and de Miranda, S. (2020). "Unsteady inflow conditions: A variationally based solution to the insurgence of pressure fluctuations", Comput. Methods Appl. Mech. Eng., 363, 112894. https://doi.org/10.1016/j.cma.2020.112894. 
  51. Paya-Zaforteza, I. and Garlock, M.E.M. (2021), "Structural Engineering Heroes and Their Inspirational Journey", Struct. Eng. Int., 31(4) 584-597. https://doi.org/10.1080/10168664.2021.1919038. 
  52. Peyret, R. and Taylor, T.D. (1983), Computational Methods for Fluid Flow in: Scientific Computation (SCIENTCOMP), Springer. https://doi.org/10.1007/978-3-642-85952-6. 
  53. Pope, S.B. (2000), Turbulent Flows. Cambridge university press. 10.1017/CBO9780511840531 
  54. Potsis, T., Tominaga, Y. and Stathopoulos, T. (2023), "Computational wind engineering: 30 years of research progress in building structures and environment", J. Wind Eng. Ind. Aerod., 234, 105346. https://doi.org/10.1016/j.jweia.2023.105346. 
  55. Pozzati, P. (1992) Proliferation of Codes and Technicism, last official lecture of the Course on Structural Design, academic year 1991-1992, Faculty of Engineering, University of Bologna, June 3rd 1992, Bologna (in Italian). 
  56. PrEN 1991-1-4:2021 (2021), Eurocode 1: Actions on Structures - Part 1-4: General Actions - Wind Actions, European Committee for Standardization (CEN); Brussels, Belgium. 
  57. Regalado, A. (2011), Who Coined 'Cloud Computing'?, MIT Technology Review, https://www.technologyreview.com/2011/10/31/257406/whocoined-cloud-computing/ 
  58. Ricciardelli, F. (2023), "prEN1991-1-4:2021: the draft Second Generation Eurocode on wind actions on structures - a personal view", Wind Struct., 37(2) 
  59. Richards, P.J. and Norris, S.E. (2019) "Appropriate boundary conditions for computational wind engineering: Still an issue after 25 years", J. Wind Eng. Ind. Aerod., 190, 245-255. https://doi.org/10.1016/j.jweia.2019.05.012. 
  60. Roache, P.J. (1997), "Quantification of uncertainty in computational fluid dynamics", Annu. Rev. Fluid Mech., 29, 123-160. https://doi.org/10.1146/annurev.fluid.29.1.123. 
  61. Roache, P.J., Ghia, K., White, F. (1986) "Editorial policy statement on the control of numerical accuracy". ASME. J. Fluids Eng., 108 (1), 2. https://doi.org/10.1115/1.3242537. 
  62. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures, Dover Pubblications. 10.1002/9781119375890. 
  63. Solari, G. (1993), "Gust buffeting. I: Peak wind velocity and equivalent pressure", J. Struct. Eng., 119, 365-382. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(365). 
  64. Spalart, P.R. (2001), Young-Person's Guide to Detached-Eddy Simulation Grids, NASA CR-2001-211032. 
  65. Stathopoulos, T. (2002), "The numerical wind tunnel for industrial aerodynamics: real or virtual in the new millennium?", Wind Struct., 5(2-4), 193-208. https://doi.org/10.12989/was.2002.5.2_3_4.193. 
  66. Tamura, T., Nozawa, K. and Kondo, K. (2008), "AIJ guide for numerical prediction of wind loads on buildings", J. Wind Eng. Ind. Aerod., 96(10), 1974-1984. https://doi.org/10.1016/j.jweia.2008.02.020. 
  67. Tamura, Y. and Van Phuc, P. (2015), "Development of CFD and applications: Monologue by a non-CFD-expert", J. Wind Eng. Ind. Aerod., 144, 3-13. https://doi.org/10.1016/j.jweia.2015.05.003. 
  68. Thordal, M.S., Bennetsen, J.C. and Koss, H.H.H. (2019), "Review for practical application of CFD for the determination of wind load on high-rise buildings", J. Wind Eng. Ind. Aerod., 186, 155-168. https://doi.org/10.1016/j.jweia.2018.12.019. 
  69. Tokyo Polytechnic University Aerodynamic Database, http://wind.arch.t-kougei.ac.jp/system/eng/contents/code/tpu 
  70. Tominaga, Y. and Stathopoulos, T. (2013), "CFD simulation of near-field pollutant dispersion in the urban environment: a review of current modelling techniques", Atmos. Environ., 79, 716-730. https://doi.org/10.1016/j.atmosenv.2013.07.028. 
  71. Thompson M.K. and Thompson, J.M. (2017), ANSYS Mechanical APDL for Finite Element Analysis, Elsevier 
  72. Trias, F.X., Gorobets, A. and Oliva, A. (2015), "Turbulent flow around a square cylinder at Reynolds number 22000: A DNS study", Comput. Fluids, 123, 87-98. https://doi.org/10.1016/j.compfluid.2015.09.013. 
  73. Versteeg, H.K. and Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson education. 
  74. Wilcox, D.C. (1998), Turbulence Modeling for CFD. La Canada, CA: DCW Industries. 
  75. Wu, X. (2017), "Inflow turbulence generation methods", Annual. Rev. Fluid Mech., 49, 23-49. https://doi.org/10.1146/annurev-fluid-010816-060322. 
  76. Xing, J., Patruno, L., Pozzuoli, C., Pedro, G., de Miranda, S. and Ubertini, F. (2022), "Wind loads prediction using LES: Inflow generation, accuracy and cost assessment for the case of Torre Gioia 22", Eng. Struct., 262, 114292. https://doi.org/10.1016/j.engstruct.2022.114292.