DOI QR코드

DOI QR Code

Application of Sedimentary Neodymium Isotopes to the Reconstruction of the Arctic Paleoceanography

퇴적물의 네오디뮴 동위원소 비를 활용한 북극 고환경 복원

  • Kwangchul Jang (Division of Glacial Environment Research, Korea Polar Research Institute) ;
  • Seung-Il Nam (Division of Glacial Environment Research, Korea Polar Research Institute)
  • 장광철 (극지연구소 빙하환경연구본부) ;
  • 남승일 (극지연구소 빙하환경연구본부)
  • Received : 2023.04.10
  • Accepted : 2023.05.31
  • Published : 2023.06.30

Abstract

Climate and environmental changes in the Arctic Ocean due to global warming have been linked to extreme climate change in mid-latitude regions, including the Korean Peninsula, requiring a better understanding of the Arctic climate system based on the paleo-analog. This review introduces three paleoenvironmental research cases using neodymium isotopes (143Nd/144Nd, εNd) measured on two different fractions of marine sediments: silicate-bound 'detrital' and Fe-Mn oxide-dominated 'authigenic' fractions. In the first case, detrital εNd in core HH17-1085-GC on the continental shelf off northern Svalbard was used for tracing changes in sediment provenance and associated glacier behavior over the last 16.3 ka. The second case showed the potential use of authigenic εNd as a quasi-conservative water mass tracer. Three prominent εNd peaks and troughs observed in core PS72/410-1 from the Mendeleev Ridge in the western Arctic Ocean over the past 76 ka suggested episodic meltwater discharge events during 51~46, 39~35 and 21~13 ka BP. The last case proposed the use of the difference between authigenic and detrital εNd as a proxy for reconstructing glacier fluctuation. The idea is based on the assumption that enhanced glacial erosion during glacier advances can supply sufficient freshly-exposed rock substrate for incongruent weathering, potentially leading to greater isotopic decoupling between bedrock and dissolved weathering products as recorded in detrital and authigenic εNd, respectively. Thus, it would be worthwhile to take advantage of sedimentary εNd to improve our understanding of past environmental changes in polar regions.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단 해양·극지기초원천기술개발사업의 지원을 받아 수행된 연구임(No. 한국연구재단 NRF-2021M1A5A1075512)(KOPRI-PN23013)을 밝힙니다.

References

  1. Aharon P (2006) Entrainment of meltwaters in hyperpycnal flows during deglaciation superfloods in the Gulf of Mexico. Earth Planet Sc Lett 241:260-270 https://doi.org/10.1016/j.epsl.2005.10.034
  2. Andersson PS, Dahlqvist R, Ingri J, Gustafsson O (2001) The isotopic composition of Nd in a boreal river: a reflection of selective weathering and colloidal transport. Geochim Cosmochim Ac 65:521-527 https://doi.org/10.1016/S0016-7037(00)00535-4
  3. Andersson PS, Porcelli D, Frank M, Bjork G, Dahlqvist R, Gustafsson O (2008) Neodymium isotopes in seawater from the Barents Sea and Fram Strait Arctic-Atlantic gateways. Geochim Cosmochim Ac 72:2854-2867 https://doi.org/10.1016/j.gca.2008.04.008
  4. Bayon G, Barrat JA, Etoubleau J, Benoit M, Bollinger C, Revillon S (2009) Determination of rare earth elements, Sc, Y, Zr, Ba, Hf and Th in geological samples by ICPMS after Tm addition and alkaline fusion. Geostand Geoanal Res 33:51-62 https://doi.org/10.1111/j.1751-908X.2009.00880.x
  5. Bazhenova E, Fagel N, Stein R (2017) North American origin of "pink-white" layers at the Mendeleev Ridge (Arctic Ocean): new insights from lead and neodymium isotope composition of detrital sediment component. Mar Geol 386:44-55 https://doi.org/10.1016/j.margeo.2017.01.010
  6. Blaser P, Lippold J, Gutjahr M, Frank N, Link JM, Frank M (2016) Extracting foraminiferal seawater Nd isotope signatures from bulk deep sea sediment by chemical leaching. Chem Geol 439:189-204 https://doi.org/10.1016/j.chemgeo.2016.06.024
  7. Bohm E, Lippold J, Gutjahr M, Frank M, Blaser P, Antz B, Fohlmeister J, Frank N, Andersen M, Deininger M (2015) Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517:73-76 https://doi.org/10.1038/nature14059
  8. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710-714 https://doi.org/10.1126/science.1172873
  9. Dahlqvist R, Andersson P, Porcelli D (2007) Nd isotopes in Bering Strait and Chukchi Sea water. Geochim Cosmochim Ac 71:A196
  10. Dallmann W, Elvevold S (2015) Bedrock geology. In: Dallmann W (ed) Geoscience atlas of Svalbard. Norwegian Polar Institute Report Series 148. Tromso, Norwegian Polar Institute, pp 133-173
  11. Darby DA, Polyak L, Bauch HA (2006) Past glacial and interglacial conditions in the Arctic Ocean and marginal seas - a review. Prog Oceanogr 71:129-144 https://doi.org/10.1016/j.pocean.2006.09.009
  12. Dausmann V, Gutjahr M, Frank M, Kouzmanov K, Schaltegger U (2019) Experimental evidence for mineral-controlled release of radiogenic Nd, Hf and Pb isotopes from granitic rocks during progressive chemical weathering. Chem Geol 507:64-84 https://doi.org/10.1016/j.chemgeo.2018.12.024
  13. Dong L, Polyak L, Liu Y, Shi X, Zhang J, Huang Y (2020) Isotopic fingerprints of ice-rafted debris offer new constraints on middle to Late Quaternary Arctic Circulation and glacial history. Geochem Geophy Geosy 21:e2020GC009019
  14. Fagel N, Not C, Gueibe J, Mattielli N, Bazhenova E (2014) Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge. Quaternary Sci Rev 92:140-154 https://doi.org/10.1016/j.quascirev.2013.12.011
  15. Farnsworth WR, Allaart L, Ingolfsson O, Alexanderson H, Forwick M, Noormets R, Retelle M, Schomacker A (2020) Holocene glacial history of Svalbard: status, perspectives and challenges. Earth-Sci Rev 208:103249
  16. Fjeldskaar W, Bondevik S, Amantov A (2018) Glaciers on Svalbard survived the Holocene thermal optimum. Quaternary Sci Rev 199:18-29 https://doi.org/10.1016/j.quascirev.2018.09.003
  17. Frank M (2002) Radiogenic isotopes: tracers of past ocean circulation and erosional input. Rev Geophys 40:1-1-1-38 https://doi.org/10.1029/2000RG000094
  18. Fuentes V, Alurralde G, Meyer B, Aguirre GE, Canepa A, Wolfl A-C, Hass HC, Williams GN, Schloss IR (2016) Glacial melting: an overlooked threat to Antarctic krill. Sci Rep 6:27234
  19. Goldstein SL, O'Nions RK, Hamilton PJ (1984) A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sc Lett 70:221-236 https://doi.org/10.1016/0012-821X(84)90007-4
  20. Grousset FE, Biscaye PE, Zindler A, Prospero J, Chester R (1988) Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic. Earth Planet Sc Lett 87:367-378 https://doi.org/10.1016/0012-821X(88)90001-5
  21. Gutjahr M, Frank M, Stirling CH, Klemm V, van de Flierdt T, Halliday AN (2007) Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments. Chem Geol 242:351-370 https://doi.org/10.1016/j.chemgeo.2007.03.021
  22. Haley BA, Frank M, Spielhagen RF, Eisenhauer A (2007) Influence of brine formation on Arctic Ocean circulation over the past 15 million years. Nat Geosci 1:68-72 https://doi.org/10.1038/ngeo.2007.5
  23. Hemming SR (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42:RG1005. doi:1010.1029/2003RG000128
  24. Hillaire-Marcel C, Maccali J, Not C, Poirier A (2013) Geochemical and isotopic tracers of Arctic sea ice sources and export with special attention to the Younger Dryas interval. Quaternary Sci Rev 79:184-190 https://doi.org/10.1016/j.quascirev.2013.05.001
  25. Hindshaw RS, Aciego SM, Piotrowski AM, Tipper ET (2018) Decoupling of dissolved and bedrock neodymium isotopes during sedimentary cycling. Geochem Perspect Lett 8:43-46 https://doi.org/10.7185/geochemlet.1828
  26. Horikawa K, Asahara Y, Yamamoto K, Okazaki Y (2010) Intermediate water formation in the Bering Sea during glacial periods: evidence from neodymium isotope ratios. Geology 38:435-438 https://doi.org/10.1130/G30225.1
  27. Horikawa K, Martin EE, Basak C, Onodera J, Seki O, Sakamoto T, Ikehara M, Sakai S, Kawamura K (2015) Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean. Nat Commun 6:8587. doi:10.1038/ncomms8587
  28. Howat IM, Eddy A (2011) Multi-decadal retreat of Greenland's marine-terminating glaciers. J Glaciol 57:389-396 https://doi.org/10.3189/002214311796905631
  29. Hu A, Meehl GA, Otto-Bliesner BL, Waelbroeck C, Han W, Loutre MF, Lambeck K, Mitrovica JX, Rosenbloom N (2010) Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes. Nat Geosci 3:118-121 https://doi.org/10.1038/ngeo729
  30. Hughes AL, Gyllencreutz R, Lohne OS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets-a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1-45 https://doi.org/10.1111/bor.12142
  31. Jacobsen SB, Wasserburg GJ (1980) Sm-Nd isotopic evolution of chondrites. Earth Planet Sc Lett 50:139-155 https://doi.org/10.1016/0012-821X(80)90125-9
  32. Jakobsson M, Lovlie R, Al-Hanbali H, Arnold E, Bac kman J, Morth M (2000) Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28:23-26 https://doi.org/10.1130/0091-7613(2000)28<23:MACCIA>2.0.CO;2
  33. Jakobsson M, Mayer LA, Bringensparr C, Castro CF, Mohammad R, Johnson P, Ketter T, Accettella D, Amblas D, An L, Arndt JE, Canals M, Casamor JL, Chauc he N, Coakley B, Danielson S, Demarte M, Dickson ML, Dorschel B, Dowdeswell JA, Dreutter S, Fremand AC, Gallant D, Hall JK, Hehemann L, Hodnesdal H, Hong J, Ivaldi R, Kane E, Klaucke I, Krawczyk DW, Kristoffersen Y, Kuipers BR, Millan R, Masetti G, Morlighem M, Noormets R, Prescott MM, Rebesco M, Rignot E, Semiletov I, Tate AJ, Travaglini P, Velicogna I, Weatherall P, Weinrebe W, Willis JK, Wood M, Zarayskaya Y, Zhang T, Zimmermann M, Zinglersen KB (2020) The international bathymetric chart of the Arctic Ocean Version 4.0. Sci Data 7:176 https://doi.org/10.1038/s41597-020-0520-9
  34. Jang K, Ahn Y, Joe YJ, Braun CA, Joo YJ, Kim J-H, Bayon G, Forwick M, Vogt C, Nam S-I (2021) Glacial and environmental changes in northern Svalbard over the last 16.3 ka inferred from neodymium isotopes. Global Planet Change 201:103483
  35. Jang K, Bayon G, Han Y, Joo YJ, Kim J-H, Ryu J-S, Woo J, Forwick M, Szczucinski W, Kim J-H, Nam S-I (2020) Neodymium isotope constraints on chemical weathering and past glacial activity in Svalbard. Earth Planet Sc Lett 542:116319
  36. Jang K, Bayon G, Vogt C, Forwick M, Ahn Y, Kim J-H, Nam S-I (2023a) Non-linear response of glacier melting to Holocene warming in Svalbard recorded by sedimentary iron (oxyhydr)oxides. Earth Planet Sc Lett 607:118054
  37. Jang K, Han Y, Huh Y, Nam S-I, Stein R, Mac kensen A, Matthiessen J (2013) Glacial freshwater discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge, western Arctic Ocean. Earth Planet Sc Lett 369-370:148-157 https://doi.org/10.1016/j.epsl.2013.03.018
  38. Jang K, Huh Y, Han Y (2017) Authigenic Nd isotope record of North Pacific Intermediate Water formation and boundary exchange on the Bering Slope. Quaternary Sci Rev 156:150-163 https://doi.org/10.1016/j.quascirev.2016.11.032
  39. Jang K, Huh Y, Han Y (2018) Diagenetic overprint on authigenic Nd isotope records: a case study of the Bering Slope. Earth Planet Sc Lett 498:247-256 https://doi.org/10.1016/j.epsl.2018.06.045
  40. Jang K, Woo KS, Kim J-K, Nam S-I (2023b) Arctic deepwater anoxia and its potential role for ocean carbon sink during glacial periods. Commun Earth Environ 4:45
  41. Johansson A, Gee D, Bjorklund L, Witt-Nilsson P (1995) Isotope studies of granitoids from the Bangenhuk formation, Ny Friesland Caledonides, Svalbard. Geol Mag 132:303-320 https://doi.org/10.1017/S0016756800013625
  42. Johansson A, Gee DG (1999) The late Palaeoproterozoic Eskolabreen granitoids of southern Ny Friesland, Svalbard Caledonides-geochemistry, age, and origin. GFF 121:113-126 https://doi.org/10.1080/11035899901212113
  43. Johansson A, Larionov AN, Tebenkov AM, Gee DG, Whitehouse MJ, Vestin J (2000) Grenvillian magmatism of western and central Nordaustlandet, northeastern Svalbard. Earth Env Sci T R So 90:221-254
  44. Johansson A, Larionov AN, Tebenkov AM, Ohta Y, Gee DG (2002) Caledonian granites of western and central Nordaustlandet, northeast Svalbard. GFF 124:135-148 https://doi.org/10.1080/11035890201243135
  45. Khim B-K, Horikawa K, Asahara Y, Kim J-E, Ikehara M (2020) Detrital Sr-Nd isotopes, sediment provenances and depositional processes in the Laxmi Basin of the Arabian Sea during the last 800 ka. Geol Mag 157:895-907 https://doi.org/10.1017/S0016756818000596
  46. Kim B-M, Son S-W, Min S-K, Jeong J-H, Kim S-J, Zhang X, Shim T, Yoon J-H (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat Commun 5:4646
  47. Kunzmann M, Halverson GP, Scott C, Minarik WG, Wing BA (2015) Geochemistry of Neoproterozoic black shales from Svalbard: implications for oceanic redox conditions spanning Cryogenian glaciations. Chem Geol 417:383-393 https://doi.org/10.1016/j.chemgeo.2015.10.022
  48. Laukert G, Frank M, Bauch D, Hathorne EC, Rabe B, von Appen W-J, Wegner C, Zieringer M, Kassens H (2017) Ocean circulation and freshwater pathways in the Arctic Mediterranean based on a combined Nd isotope, REE and oxygen isotope section across Fram Strait. Geochim Cosmochim Ac 202:285-309 https://doi.org/10.1016/j.gca.2016.12.028
  49. Mangerud J, Jakobsson M, Alexanderson H, Astakhov V, Clarke GKC, Henriksen M, Hjort C, Krinner G, Lunkka J-P, Moller P, Murray A, Nikolskaya O, Saarnisto M, Svendsen JI (2004) Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Sci Rev 23:1313-1332 https://doi.org/10.1016/j.quascirev.2003.12.009
  50. Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean: a global synthesis. Cambridge University Press, Cambridge, 384 p
  51. Murton JB, Bateman MD, Dallimore SR, Teller JT, Yang Z (2010) Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464:740-743 https://doi.org/10.1038/nature08954
  52. Not C, Hillaire-Marcel C (2012) Enhanced sea-ice export from the Arctic during the Younger Dryas. Nat Commun 3:647. doi:10.1038/ncomms1658
  53. Nuth C, Kohler J, Konig M, Deschwanden AV, Hagen JOM, Kaab A, Moholdt G, Pettersson R (2013) Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere 7:1603-1621 https://doi.org/10.5194/tc-7-1603-2013
  54. O Cofaigh C, Dowdeswell JA (2001) Laminated sediments in glacimarine environments: diagnostic criteria for their interpretation. Quaternary Sci Rev 20:1411-1436 https://doi.org/10.1016/S0277-3791(00)00177-3
  55. Ohlander B, Ingri J, Land M, Schoberg H (2000) Change of Sm-Nd isotope composition during weathering of till. Geochim Cosmochim Ac 64:813-820 https://doi.org/10.1016/S0016-7037(99)00365-8
  56. Pin C, Zalduegui JS (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79-89 https://doi.org/10.1016/S0003-2670(96)00499-0
  57. Piotrowski AM, Banakar VK, Scrivner AE, Elderfield H, Galy A, Dennis A (2009) Indian Ocean circulation and productivity during the last glacial cycle. Earth Planet Sc Lett 285:179-189 https://doi.org/10.1016/j.epsl.2009.06.007
  58. Porcelli D, Andersson PS, Baskaran M, Frank M, Bjork G, Semiletov I (2009) The distribution of neodymium isotopes in Arctic Ocean basins. Geochim Cosmochim Ac 73:2645-2659 https://doi.org/10.1016/j.gca.2008.11.046
  59. Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvarinen O, Ruosteenoja K, Vihma T, Laaksonen A (2022) The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ 3:168
  60. Roberts NL, Piotrowski AM, McManus JF, Keigwin LD (2010) Synchronous deglacial overturning and water mass source changes. Science 327:75-78 https://doi.org/10.1126/science.1178068
  61. Robinson S, Ivanovic R, van de Flierdt T, Blanchet CL, Tachikawa K, Martin EE, Cook CP, Williams T, Gregoire L, Plancherel Y, Jeandel C, Arsouze T (2021) Global continental and marine detrital εNd: an updated compilation for use in understanding marine Nd cycling. Chem Geol 567:120119
  62. Rudels B (2012) Arctic Ocean circulation and variability - advection and external forcing encounter constraints and local processes. Ocean Sci 8:261-286 https://doi.org/10.5194/os-8-261-2012
  63. Rutberg RL, Hemming SR, Goldstein SL (2000) Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405:935-938 https://doi.org/10.1038/35016049
  64. Rye CD, Naveira Garabato AC, Holland PR, Meredith MP, George NAJ, Hughes CW, Coward AC, Webb DJ (2014) Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nat Geosci 7:732-735 https://doi.org/10.1038/ngeo2230
  65. Scher HD, Martin EE (2004) Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth Planet Sc Lett 228:391-405 https://doi.org/10.1016/j.epsl.2004.10.016
  66. Seo I, Khim B-K, Cho HG, Huh Y, Lee J, Hyeong K (2022) Origin of the holocene sediments in the Ninetyeast Ridge of the Euatorial Indian Ocean. Ocean Sci J 57:345-356 https://doi.org/10.1007/s12601-021-00052-w
  67. Sharma M, Basu AR, Nesterenko G (1992) Temporal Sr-, Nd- and Pb- isotopic variations in the Siberian flood basalts: implications for the plume-source characteristics. Earth Planet Sc Lett 113:365-381 https://doi.org/10.1016/0012-821X(92)90139-M
  68. Stein R, Matthiessen J, Niessen F, Krylov A, Nam S, Bazhenova E (2010) Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung 79:97-121
  69. Sufke F, Gutjahr M, Gilli A, Anselmetti FS, Glur L, Eisenhauer A (2019) Early stage weathering systematics of Pb and Nd isotopes derived from a high-Alpine Holocene lake sediment record. Chem Geol 507:42-53 https://doi.org/10.1016/j.chemgeo.2018.12.026
  70. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingolfsson O, Jakobsson M, Kjaer KH, Larsen E, Lokrantz H, Lunkka JP, Lysa A, Mangerud J, Matiouchkov A, Murray A, Moller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late Quaternary ice sheet history of northern Eurasia. Quaternary Sci Rev 23:1229-1271 https://doi.org/10.1016/j.quascirev.2003.12.008
  71. Tachikawa K, Arsouze T, Bayon G, Bory A, Colin C, Dutay J-C, Frank N, Giraud X, Gourlan AT, Jeandel C, Lacan F, Meynadier L, Montagna P, Piotrowski AM, Plancherel Y, Puceat E, Roy-Barman M, Waelbroeck C (2017) The large-scale evolution of neodymium isotopic composition in the global modern and Holocene ocean revealed from seawater and archive data. Chem Geol 457:131-148 https://doi.org/10.1016/j.chemgeo.2017.03.018
  72. Tachikawa K, Jeandel C, Roy-Barman M (1999) A new approach to the Nd residence time in the ocean: the role of atmospheric inputs. Earth Planet Sc Lett 170:433-446 https://doi.org/10.1016/S0012-821X(99)00127-2
  73. Vance D, Teagle DA, Foster GL (2009) Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature 458:493-496 https://doi.org/10.1038/nature07828
  74. Vogt C, Knies J, Spielhagen RF, Stein R (2001) Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years. Global Planet Change 31:23-44 https://doi.org/10.1016/S0921-8181(01)00111-4
  75. von Blanckenburg F, Nagler TF (2001) Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water. Paleoceanography 16:424-434 https://doi.org/10.1029/2000PA000550
  76. Williams GD, Herraiz-Borreguero L, Roquet F, Tamura T, Ohshima KI, Fukamachi Y, Fraser AD, Gao L, Chen H, McMahon CR, Harcourt R, Hindell M (2016) The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nat Commun 7:12577
  77. Wilson DJ, Bertram RA, Needham EF, van de Flierdt T, Welsh KJ, McKay RM, Mazumder A, Riesselman CR, Jimenez-Espejo FJ, Escutia C (2018) Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561:383-386 https://doi.org/10.1038/s41586-018-0501-8
  78. Wilson DJ, Piotrowski AM, Galy A, Clegg JA (2013) Reactivity of neodymium carriers in deep sea sediments: implications for boundary exchange and paleoceanography. Geochim Cosmochim Ac 109:197-221 https://doi.org/10.1016/j.gca.2013.01.042
  79. Xiao W, Polyak L, Wang R, Not C, Dong L, Liu Y, Ma T, Zhang T (2021) A sedimentary record from the Makarov Basin, Arctic Ocean, reveals changing middle to Late Pleistocene glaciation patterns. Quaternary Sci Rev 270: 107176
  80. Ye L, Yu X, Xu D, Wang W, Bian Y, Xu J, Dong L, Wang R, Zhang W, Liu Y, Jin L, Yang Y (2022) Late Pleistocene Laurentide-source iceberg outbursts in the western Arctic Ocean. Quaternary Sci Rev 297:107836
  81. Zemp M, Huss M, Thibert E, Eckert N, McNabb R, Huber J, Barandun M, Machguth H, Nussbaumer SU, Gartner-Roer I, Thomson L, Paul F, Maussion F, Kutuzov S, Cogley JG (2019) Global glaciermass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568:382-386 https://doi.org/10.1038/s41586-019-1071-0
  82. Zimmermann B, Porcelli D, Frank M, Andersson PS, Baskaran M, Lee D-C, Halliday AN (2009) Hafnium isotopes in Arctic Ocean water. Geochim Cosmochim Ac 73:3218-3233 https://doi.org/10.1016/j.gca.2009.02.028