References
- Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access, 6, 52138-52160. https://doi.org/10.1109/access.2018.2870052
- Ahn, D., & Lee, K. (2022). Analysis of achievement predictive factors and predictive AI model development - Focused on blended math classes. The Mathematical Education, 61(2), 257-271. https://doi.org/10.7468/mathedu.2022.61.2.257
- Alonso, J. M. (2020). Teaching explainable artificial intelligence to high school students. International Journal of Computational Intelligence Systems, 13(1), 974-987. https://doi.org/10.2991/ijcis.d.200715.003
- Andrade-Molina, M., Montecino, A., & Aguilar, M. S. (2020). Beyond quality metrics: defying journal rankings as the philosopher's stone of mathematics education research. Educational Studies in Mathematics, 103(3), 359-374. https://doi.org/10.1007/s10649-020-09932-9
- Arik, S. O., & Pfister, T. (2021, May). Tabnet: Attentive interpretable tabular learning. In Proceedings of the AAAI conference on artificial intelligence, 35(8), 6679-6687. https://doi.org/10.3390/rs14030716
- Arrieta, A. B., Diaz-Rodriguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.2019.12.012
- Bollen, J., Rodriquez, M. A., & Van de Sompel, H. (2006). Journal status. Scientometrics, 69(3), 669-687. https://doi.org/10.1007/s11192-006-0176-z
- Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. https://doi.org/10.1016/s0169-7552(98)00110-x
- Chung, K. (2022). The effects of explainable artificial intelligence education program based on AI literacy. Journal of The Korean Association of Artificial Intelligence Education, 3(1), 1-12. https://doi.org/10.52618/aied.2022.3.1.1
- DARPA. (2016). Broad Agency Announcement, Explainable Artificial Intelligence (XAI). DARPA-BAA-16-53, 7-8.
- Datta, A., Sen, S., & Zick, Y. (2016, May). Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems. In 2016 IEEE Symposium on Security and Privacy (SP) IEEE. 598-617. https://doi.org/10.1109/sp.2016.42
- Funk, R. J., & Owen-Smith, J. (2017). A dynamic network measure of technological change. Management Science, 63(3), 791-817. https://doi.org/10.1287/mnsc.2015.2366
- Garfield, E. (2009). From the science of science to Scientometrics visualizing the history of science with HistCite software. Journal of Informetrics, 3(3), 173-179. https://doi.org/10.1016/j.joi.2009.03.009
- Gonzalez-Alcaide, G., Valderrama-Zurian, J. C., & Aleixandre-Benavent, R. (2012). The impact factor in non-English-speaking countries. Scientometrics, 92(2), 297-311. https://doi.org/10.1007/s11192-012-0692-y
- Haensly, P. J., Hodges, P. E., & Davenport, S. A. (2008). Acceptance rates and journal quality: An analysis of journals in economics and finance. Journal of Business & Finance Librarianship, 14(1), 2-31. https://doi.org/10.1080/08963560802176330
- Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.
- Inhaber, H., & Przednowek, K. (1976). Quality of research and the Nobel prizes. Social Studies of Science, 6(1), 33-50. https://doi.org/10.1142/9789814299381_0002
- Kim, S., & Choi, M. K. (2022). AI-Based educational platform analysis supporting personalized mathematics learning. Communication of Mathematics Education, 36(3), 417-438. https://doi.org/10.7468/jksmee.2022.36.3.417
- Kim, S., Kim, W., Jang, Y., & Kim, H.(2021). Development of explainable AI-based learning support system. The Journal of Korean Association of Computer Education, 24(1), 107-115. https://doi.org/10.5392/JKCA.2021.21.12.013
- Lee, J. (2014). A comparative study on the centrality measures for analyzing research collaboration networks. Journal of the Korean Society for Information Management, 31(3), 153-179. https://doi.org/10.3743/kosim.2014.31.3.153
- Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
- Mariani, M. S., Medo, M., & Zhang, Y. C. (2016). Identification of milestone papers through time-balanced network centrality. Journal of Informetrics, 10(4), 1207-1223. https://doi.org/10.1016/j.joi.2016.10.005
- Moed, H. F. (2005). Citation analysis of scientific journals and journal impact measures. Current Science , 1990-1996. https://doi.org/10.1007/1-4020-3714-7_6
- Molnar, C. (2020). Interpretable machine learning, Lulu. com.
- Nivens, R. A., & Otten, S. (2017). Assessing journal quality in mathematics education. Journal for Research in Mathematics Education, 48(4), 348-368. https://doi.org/10.5951/jresematheduc.48.4.0348
- Oh, S. & Kwon, O. (2023). Development of an impact identification program in mathematical education research using machine learning and network. Communications of Mathematical Education, 37(1), 21-45. https://doi.org/10.7468/jksmee.2023.37.1.21
- Park, D., & Shin. S. (2021). A study on the educational meaning of eXplainable artificial intelligence for elementary artificial intelligence education. Journal of the Korean Association of Information Education, 25(5), 803-812. https://doi.org/10.14352/jkaie.2021.25.5.803
- Park, H. Y., Son, B. E., & Ko, H. K. (2022). Study on the mathematics teaching and learning artificial intelligence platform analysis. Journal of the Korean Society of Mathematics Education Series E: Communication of Mathematics Education, 36(1), 1-21. https://doi.org/10.7468/jksmee.2022.36.1.1
- Price, D. (1963). Little science, big science... and beyond (Vol. 480). Columbia University Press.
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). Why should i trust you: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144), https://doi.org/10.18653/v1/n16-3020
- Sarigol, E., Pfitzner, R., Scholtes, I., Garas, A., & Schweitzer, F. (2014). Predicting scientific success based on coauthorship networks. EPJ Data Science, 3, 1-16. https://doi.org/10.1140/epjds/s13688-014-0009-x
- Stolerman, I. P., & Stenius, K. (2008). The language barrier and institutional provincialism in science Drug and Alcohol Dependence, 92(1-3), 1-2. https://doi.org/10.1016/j.drugalcdep.2007.07.010
- Weihs, L., & Etzioni, O. (2017, June). Learning to predict citation-based impact measures. In 2017 ACM/IEEE joint conference on digital libraries (JCDL) (pp. 1-10). IEEE. https://doi.org/10.1109/jcdl.2017.7991559
- Weis, J. W., & Jacobson, J. M. (2021). Learning on knowledge graph dynamics provides an early warning of impactful research. Nature Biotechnology, 39(10), 1300-1307. https://doi.org/10.1038/s41587-021-00907-6
- Williams, S. R., & Leatham, K. R. (2017). Journal quality in mathematics education. Journal for Research in Mathematics Education, 48(4), 369-396. https://doi.org/10.5951/jresematheduc.48.4.0369
- Zhou, Y., Li, Q., Yang, X., & Cheng, H. (2021). Predicting the popularity of scientific publications by an age-based diffusion model. Journal of Informetrics, 15(4), 101177. https://doi.org/10.1016/j.joi.2021.101177
- Zhu, X., Turney, P., Lemire, D., & Vellino, A. (2015). Measuring academic influence: Not all citations are equal. Journal of the Association for Information Science and Technology, 66(2), 408-427. https://doi.org/10.1002/asi.23179