DOI QR코드

DOI QR Code

Development of a predictive functional control approach for steel building structure under earthquake excitations

  • Mohsen Azizpour (Department of Civil Engineering, Ahvaz Branch, Islamic Azad University) ;
  • Reza Raoufi (Department of Civil Engineering, Ahvaz Branch, Islamic Azad University) ;
  • Ehsan Kazeminezhad (Department of Civil Engineering, Ahvaz Branch, Islamic Azad University)
  • Received : 2023.04.19
  • Accepted : 2023.08.21
  • Published : 2023.09.25

Abstract

Model Predictive Control (MPC) is an advanced control approach that uses the current states of the system model to predict its future behavior. In this article, according to the seismic dynamics of structural systems, the Predictive Functional Control (PFC) method is used to solve the control problem. Although conventional PFC is an efficient control method, its performance may be impaired due to problems such as uncertainty in the structure of state sensors and process equations, as well as actuator saturation. Therefore, it requires the utilization of appropriate estimation algorithms in order to accurately evaluate responses and implement actuator saturation. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering simultaneously the saturation actuator. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering the saturation actuator. Thus, the structural responses are formulated by two estimation models using the H∞ filter. First, the H∞ filter estimates responses using a performance bound (𝜃). Second, the H∞ filter is converted into a Kalman filter in a special case by considering the 𝜃 equal to zero. Therefore, the scheme based on the Kalman filter (KPFC) is considered a comparative model. The proposed method is evaluated through numerical studies on a building equipped with an Active Tuned Mass Damper (ATMD) under near and far-field earthquakes. Finally, HPFC is compared with classical (CPFC) and comparative (KPFC) schemes. The results show that HPFC has an acceptable efficiency in boosting the accuracy of CPFC and KPFC approaches under earthquakes, as well as maintaining a descending trend in structural responses.

Keywords

References

  1. Amini, F. and Tavassoli, M.R. (2005), "Optimal structural active control force, number and placement of controllers", Eng. Struct., 27(9), 1306-1316. https://doi.org/10.1016/j.engstruct.2005.01.006.
  2. Banavar, R.N. (1992), A Game Theoretic Approach to Linear Dynamic Estimation, The University of Texas at Austin, Austin, TX, USA.
  3. Bemporad, A., Borrelli, F. and Morari, M. (2002), "Model predictive control based on linear programming~the explicit solution", IEEE Trans. Automat. Control, 47(12), 1974-1985. https//doi.org/10.1109/TAC.2002.805688.
  4. Camacho, E.F. and Alba, C.B. (2013), Model Predictive Control, Springer Science & Business Media, London, UK.
  5. Cao, Y.Y., Lin, Z. and Ward, D.G. (2002), "An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation", IEEE Trans. Automat. Control, 47(1), 140-145. https//doi.org/10.1109/9.981734.
  6. Datta, T. (2003). "A state-of-the-art review on active control of structures", ISET J. Earthq. Technol., 40(1), 1-17. https://doi.org/10.1016/0141-0296(88)90033-8.
  7. Ding, J., Fan, C. and Lin, J. (2013), "Auxiliary model based parameter estimation for dual-rate output error systems with colored noise", Appl. Math. Model., 37(6), 4051-4058. https://doi.org/10.1016/j.apm.2012.09.016.
  8. Elseaidy, W.M., Baugh, J.W. and Cleaveland, R. (1996), "Verification of an active control system using temporal process algebra", Eng. Comput., 12(1), 46-61. https://doi.org/10.1007/BF01200261.
  9. Grandhi, R.V. (1990), "Optimum design of space structures with active and passive damping", Eng. Comput., 6(3), 177-183. https://doi.org/10.1007/BF01200315.
  10. Hadi, M.N. and Uz, M.E. (2015), "Investigating the optimal passive and active vibration controls of adjacent buildings based on performance indices using genetic algorithms", Eng. Opt., 47(2), 265-286. https://doi.org/10.1080/0305215X.2014.887704.
  11. Khodabandehlou, H., Pekcan, G., Fadali, M.S. and Salem, M.M. (2018), "Active neural predictive control of seismically isolated structures", Struct. Control Health Monit., 25(1), e2061. https://doi.org/10.1002/s tc.2061.
  12. Kim, B., Washington, G.N. and Yoon, H.S. (2013), "Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control", Smart Struct. Syst., 11(6), 623-635. https://doi.org/10.12989/sss.2013.11.6.623.
  13. Kothare, M.V., Campo, P.J., Morari, M. and Nett, C.N. (1994), "A unified framework for the study of anti-windup designs", Automat., 30(12), 1869-1883. https://doi.org/10.1016/0005-1098(94)90048-5.
  14. Labarre, D., Grivel, E., Najim, M. and Christov, N. (2007), "Dual H∞ algorithms for signal processing-Application to speech enhancement", IEEE Trans. Signal Pr., 55(11), 5195-5208. https://doi.org/10.1109/TSP.2007.899587.
  15. Lam, V.T.T., Sattar, A., Wang, L. and Lazar, M. (2020), "Fast hildreth-based model predictive control of roll angle for a fixed-wing uav", IFAC-PapersOnLine, 53(2), 5757-5763. https://doi.org/10.1016/j.ifacol.2020.12.1608.
  16. Lana, C. and Rotea, M. (2008), "Desensitized model predictive control applied to a structural benchmark problem", IFAC Proc., 41(2), 13188-13193. https://doi.org/10.3182/20080706-5-KR-1001.02234.
  17. Landau, I.D. (1993), "Evolution of adaptive control", J. Dyn. Syst. Measure. Control, 115(2B), 381-391. https://doi.org/10.1115/1.2899078.
  18. Lee, J.H. (2011), "Model predictive control: Review of the three decades of development", Int. J. Control Automat. Syst., 9(3), 415-424. https://doi.org/10.1007/s12555-011-0300-6.
  19. Mei, G., Kareem, A. and Kantor, J.C. (2001), "Real-time model predictive control of structures under earthquakes", Earthq. Eng. Struct. Dyn., 30(7), 995-1019. https://doi.org/10.1002/eqe.49.
  20. Mei, G., Kareem, A. and Kantor, J.C. (2004), "Model predictive control of wind-excited building: Benchmark study", J. Eng. Mech., 130(4), 459-465. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(459).
  21. Nemra, A. and Aouf, N. (2009), "Robust airborne 3D visual simultaneous localization and mapping with observability and consistency analysis", J. Intell. Robot. Syst., 55(4), 345-376. https://doi.org/10.1007/s10846-008-9306-6.
  22. Ohtori, Y., Christenson, R., Spencer Jr, B. and Dyke, S. (2004), "Benchmark control problems for seismically excited nonlinear buildings", J. Eng. Mech., 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366).
  23. Peng, H., Chen, Y., Li, E., Zhang, S. and Chen, B. (2018), "Explicit expression-based practical model predictive control implementation for large-scale structures with multi-input delays", J. Vib. Control, 24(12), 2605-2620. https://doi.org/10.1177/1077546316689341.
  24. Peng, H., Li, F. and Kan, Z. (2020), "A novel distributed model predictive control method based on a substructuring technique for smart tensegrity structure vibrations", J. Sound Vib., 471, 115171. https://doi.org/10.1016/j.jsv.2020.115171.
  25. Peng, H., Li, F., Zhang, S. and Chen, B. (2017), "A novel fast model predictive control with actuator saturation for large-scale structures", Comput. Struct., 187, 35-49. https://doi.org/10.1016/j.compstruc.2017.03.014.
  26. Pourzeynali, S., Lavasani, H. and Modarayi, A. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
  27. Rad, A.B., Nouri, M., Katebi, J. and Ghasemi, S.A.M. (2021), "A developed model predictive control scheme for vibration attenuation of building structures", Smart Struct. Syst., 27(4), 691-703. https://doi.org/10.12989/sss.2021.27.4.691.
  28. Simon, D. (2006), Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons, Hoboken, NJ, USA.
  29. Stewart, B.T., Venkat, A.N., Rawlings, J.B., Wright, S.J. and Pannocchia, G. (2010), "Cooperative distributed model predictive control", Syst. Control Lett., 59(8), 460-469. https://doi.org/10.1016/j.sysconle.2010.06.005.
  30. Vikalo, H., Hassibi, B., Erdogan, A.T. and Kailath, T. (2005), "On robust signal reconstruction in noisy filter banks", Signal Pr., 85(1), 1-14. https://doi.org/10.1016/j.sigpro.2004.08.011.
  31. Wang, L. (2009), Model Predictive Control System Design and Implementation Using MATLAB®, Springer Science & Business Media, London, UK.
  32. Xu, L.H. and Li, Z.X. (2011), "Model predictive control strategies for protection of structures during earthquakes", Struct. Eng. Mech., 40(2), 233-243. https://doi.org/10.12989/sem.2011.40.2.233.