Acknowledgement
The National Earthquake Engineering Research Center, CGS, Algeria supported this research.
References
- 3DMacro (2014), Computer Program for the Seismic Assessment of Masonry Buildings, Release 3.0, Gruppo Sismica s.r.l., Catania, Italy. www.3dmacro.it
- Akhoundi, F., Vasconcelos, G., Lourenco, P., Silva, L.M., Cunha, F. and Fangueiro, R. (2018), "In-plane behavior of cavity masonry infills and strengthening with textile reinforced mortar", Eng. Struct., 156, 145-160. https://doi.org/10.1016/j.engstruct.2017.11.002.
- Al-Chaar, G., Issa, M. and Sweeney, S. (2002), "Behavior of masonry-infilled nonductile reinforced concrete frames", J. Struct. Eng., 128(8), 1055-1063. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1055).
- Al Hanoun, M.H., Abrahamczyk, L. and Schwarz, J. (2019), "Macro modeling of in and out-of-plane behavior of unreinforced masonry infill walls", Bull. Earthq. Eng., 17(1), 519-535. https://doi.org/10.1007/s10518-018-0458-x
- Asteris, P.G., Cotsovos, D.M., Chrysostomou, C.Z., Mohebkhah, A. and Al-Chaar, G.K. (2013), "Mathematical micromodeling of infilled frames: State of the art", J. Eng. Struct., 56, 1905-1921. https://doi.org/10.1016/j.engstruct.2013.08.010.
- Atkinson, R.H., Amadei, B.P., Saeb, S. and Sture, S. (1989), "Response of masonry bed joints indirect shear", J. Struct. Eng., 115(9), 2276-2296. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2276).
- Bergami, A.V. and Nuti, C. (2015), "Experimental tests and global modeling of masonry infilled frames", Earthq. Struct., 9(2), 281-303. https://doi.org/10.12989/eas.2015.9.2.281.
- Bhaskar, J.K., Bhunia, D., Karthik, J. and Samadhiya, A. (2022), "A state-of-the-art review on the evolution of performance of masonry infill walls under lateral loadings", Asian J Civ Eng., 23(7), 973-1028. https://doi.org/10.1007/s42107-022-00446-8.
- Bouarroudj, M.A. and Boudaoud, Z. (2022), "Numerical investigation of predicting the in-plane behavior of infilled frame with single diagonal strut models", Struct. Eng. Mech., 81(2), 131-146. https://doi.org/10.12989/sem.2022.81.2.131.
- Calio, I. and Panto, B. (2014), "A macro-element modelling approach of Infilled Frame Structures", Comput. Struct., 143, 91-107. https://doi.org/10.1016/j.compstruc.2014.07.008.
- Calio, I., Marletta, M. and Panto, B. (2012), "A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings", Eng. Struct., 40, 327-338. https://doi.org/10.1016/j.engstruct.2012.02.039.
- Campione, G., Cavaleri, L., Macaluso, G., Amato, G. and Di Trapani, F. (2015), "Evaluation of infilled frames: an updated inplane-stiffness macro-model considering the effects of vertical loads", Bull. Earthq. Eng., 13(8), 2265-2281. https://doi.org/10.1007/s10518-014-9714-x.
- Cavaleri, L.N and Di Trapani, F. (2014), "Cyclic response of masonry infilled RC frames: Experimental results and simplified modeling", Soil. Dyn. Earthq. Eng., 65, 224-242. https://doi.org/10.1016/j.soildyn.2014.06.016.
- Di Trapani, F., Shing, P.B. and Cavaleri, L. (2017), "Macroelement model for in-plane and out-of-plane responses of masonry infills in frame structures", J. Struct. Eng., 144(2), 04017198. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001926.
- Eurocode 6 (2013), Design of Masonry Structures, Part 1-1: General Rules for Buildings. Rules for Reinforced and Unreinforced Masonry, European Committee for Standardization, Brussels, Belgium.
- FEMA-273 (1997), Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., USA.
- Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2016), "Experimental evaluation of out-of plane capacity of masonry infill walls", Eng. Struct., 111, 48-63. https://doi.org/10.1016/j.engstruct.2015.12.013.
- Gaetani d'Aragona, M., Polese, M. and Prota, A. (2021), "Effect of masonry infill constitutive law on the global response of infilled RC buildings", Build., 11(2), 57. https://doi.org/10.3390/buildings11020057.
- Holmes, M. (1961), "Steel frames with brickwork and concrete infilling", Inst. Civil Eng., 19(4), 473-478. https://doi.org/10.1680/iicep.1961.11305.
- Jiang, R., Jiang, L., Hu, Y., Ye, J. and Zhou, L. (2020), "A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames", Struct. Eng. Mech., 74(6), 821-832. https://doi.org/10.12989/sem.2020.74.6.821.
- Kareem, K.M. and Panto, B. (2019), "Simplified macro modelling strategies for the seismic assessment of non-ductile infilled frames: a critical appraisal", J. Build. Eng., 22, 397-414. https://doi.org/10.1016/j.jobe.2018.12.010.
- Leuchars, J.M. (1973), "Masonry infill panels", M.E. Report; University of Canterbury, Christchurch, New Zealand.
- Mebarek, K., Bourahla, N. and Remki, M. (2021), "Performance evaluation of masonry Infilled RC frame structures under lateral loads", Gradevinar, 73(3), 219-234. https://doi.org/10.14256/JCE.2647.2019.
- Mehrabi, A (1994), "Behavior of masonry-infilled reinforced concrete frames subjected to lateral loading", Ph.D. Dissertation, University of Colorado Boulder, Boulder CO, USA.
- Panto, B., Calio, I. and Lourenco, P.B. (2017), "Seismic safety evaluation of reinforced concrete masonry infilled frames using macro modelling approach", Bull. Earthq. Eng., 15(9), 3871-3895. https://doi.org/10.1007/s10518-017-0120-z.
- Polese, M., Di Ludovico, M., Gaetani d'Aragona, M., Prota, A. and Manfredi, G. (2020), "Regional vulnerability and risk assessment accounting for local building typologies", Int. J. Disaster Risk Reduct., 43, 101400. https://doi.org/10.1016/j.ijdrr.2019.101400.
- Polyakov, S.V. (1960), "On the interaction between masonry filler walls and enclosing frame when loading in the plane of the wall", Trans. Earthq. Eng., 2(3), 36-42.
- Razzaghi, M.S. and Javidnia, M. (2015), "Evaluation of the effect of infill walls on seismic performance of RC dual frames", Int. J. Adv. Struct. Eng., 7(1), 49-54. https://doi.org/10.1007/s40091-015-0081-x.
- SAP2000 (2018), Integrated Finite Elements Analysis and Design of Structures, Computers and Structures Inc., Berkeley, CA, USA.
- SeismoStruct (2020), A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures, SeismoSoft, Pavia, Italy. https://seismosoft.com
- Senthil, K. and Satyanarayanan, K.S. (2016), "Influence of interface on the behavior of infilled frame subjected to lateral load using linear analysis", Coupled Syst. Mech., 5(2), 127-144. https://doi.org/10.12989/csm.2016.5.2.127.
- Smith, B.S. (1966), "Behavior of square infilled frames", J. Struct. Div., 92(1), 381-404. https://doi.org/10.1061/jsdeag.0001387.
- Tabeshpour, M.R. and Arasteh, A.M. (2019), "A new method for infill equivalent strut width", Struct. Eng. Mech., 69(3), 257-268. https://doi.org/10.12989/sem.2019.69.3.257.
- Turnsek, V. and and Sheppard, P. (1980), "The shear and flexural resistance of masonry walls", Proceedings of the International Research Conference on Earthquake Engineering, Skopje, Yugoslavia, June.
- Turnsek, V. and Cacovic, F. (1971), "Some experimental results on the strength of brick masonry walls", Proceedings of the 2nd International Brick Masonry Conference, Stoke-on-Trent, UK.