참고문헌
- Araei, A.A. and Towhata, I. (2014), "Impact and cyclic shaking on loose sand properties in laminar box using gap sensors", Soil Dyn. Earthq. Eng., 66, 401-414. https://doi.org/10.1016/j.soildyn.2014.08.004.
- Asgari, A., Oliaei, M. and Bagheri, M. (2013), "Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques", Soil Dyn. Earthq. Eng., 51, 77-96. https://doi.org/10.1016/j.soildyn.2013.04.006.
- Bahadori, H., Ghalandarzadeh, A. and Towhata, I. (2008), "Effect of non plastic silt on the anisotropic behavior of sand", Soils Found., 48(4), 531-545. https://doi.org/10.3208/sandf.48.531.
- Bahmanpour, A., Towhata, I., Sakr, M., Mahmoud, M., Yamamoto, Y. and Yamada, S. (2019), "The effect of underground columns on the mitigation of liquefaction in shaking table model experiments", Soil Dyn. Earthq. Eng., 116, 15-30. https://doi.org/10.1016/j.soildyn.2018.09.022.
- Bayati, H. and Bagheripour, M.H. (2019), "Shaking table study on liquefaction behaviour of different saturated sands reinforced by stone columns", Mar. Georesour. Geotec., 37(7), 801-815. https://doi.org/10.1080/1064119X.2018.1492051.
- Bertalot, D., Brennan, A. and Villalobos, F. (2013), "Influence of bearing pressure on liquefaction-induced settlement of shallow foundations", Geotechnique, 63(5), 391. https://doi.org/10.1680/geot.11.P.040.
- Bouassida, M. and Porbaha, A. (2004), "Ultimate bearing capacity of soft clays reinforced by a group of columns: Application to a deep mixing technique", Soils Found., 44(3), 91-101. https://doi.org/10.3208/sandf.44.3_91.
- Bray, J.D. and Dashti, S. (2014), "Liquefaction-Induced Building Movements", Bull. Earthq. Eng., 12(3), 1129-1156. https://doi.org/10.1007/s10518-014-9619-8.
- Brown, R.E. (1977), "Vibroflotation compaction of cohesionless soils", J. Geotech. Eng. Division., 103(12), 1437-1451. https://doi.org/10.1061/AJGEB6.0000538.
- Brennan, AJ. and Madabhushi, S.P.G. (2002), "Effectiveness of Vertical Drains in Mitigation of Liquefaction", Soil Dyn. Earthq. Eng.., 22(9-12), 1059-1065. https://doi.org/10.1016/S0267-7261(02)00131-8.
- Castro, J. (2017), "Groups of encased stone columns: Influence of column length and arrangement", Geotext. Geomembranes, 45(2), 68-80. https://doi.org/10.1016/j.geotexmem.2016.12.001.
- DehqanKhalili, H., Ghalandarzadeh, A., Moradi, M. and Karimzadeh, R. (2020), "Effect of distribution patterns of DSM columns on the efficiency of liquefaction mitigation", Scientia Iranica., 27(5), 2198-2208. https://doi.org/10.24200/sci.2019.21647.
- Esmaeili, M., Gharouni-Nik, M. and Khajehei, H. (2014), "Evaluation of deep soil mixing efficiency in stabilizing loose sandy soils using laboratory tests", Geotech. Test. J., 37(5), 817-827. https://doi.org/10.1520/GTJ20130099.
- Farahmand, K., Lashkari, A. and Ghalandarzadeh, A. (2016), "Firoozkuh sand: introduction of a benchmark for geomechanical studies", Iranian J. Sci. Technol. T. Civil Eng., 40(2), 133-148. https://doi.org/10.1007/s40996-016-0009-0.
- Fattah, M.Y., Al-Neami, M.A. and Al-Suhaily, A.S. (2017), "Estimation of bearing capacity of floating group of stone columns", Eng. Sci. Technol. Int. J., 20(3), 1166-1172. https://doi.org/10.1016/j.jestch.2017.03.005.
- Green, R.A., Olgun, C.G. and Wissmann, K.J. (2008), "Shear stress redistribution as a mechanism to mitigate the risk of liquefaction", In Geotech. Earthq. Eng. Soil Dyn.., IV, 1-10. https://doi.org/10.1061/40975(318)115.
- Hasheminezhad, A. and Bahadori, H. (2019), "Seismic response of shallow foundations over liquefiable soils improved by deep soil mixing columns", Comput. Geotech., 110, 251-273. https://doi.org/10.1016/j.compgeo.2019.02.019.
- Hasheminezhad, A. and Bahadori, H. (2020), "On the deep soil mixing method in the mitigation of liquefaction-induced bearing capacity degradation of shallow foundations", Geomech. Geoeng., 1-13. https://doi.org/10.1080/17486025.2020.1755460.
- Iai, S. and Koizumi, K. (1986), "Estimation of earthquake induced excess pore water pressure for gravel drains", Proceedings of the 7th Japan Earthquake Engineering Symposium., 679-684. https://doi.org/10.2208/jscej.1996.535_155.
- Iai, S. (1989), "Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field", Soils Found., 29(1), 105-118. https://doi.org/10.3208/sandf1972.29.105
- Kayabasi, A. and Gokceoglu, C. (2018), "Liquefaction potential assessment of a region using different techniques (Tepebasi, Eskisehir, Turkey)", Eng. Geol., 246, 139-161. https://doi.org/10.1016/j.enggeo.2018.09.029.
- Kitazume, M. (1996), "JGS TC Report: Japanese design procedures and recent activities of DMM", 925-937.
- Kitazume, M., Yamazaki, H. and Tsuchida, T. (2000), "Recent soil admixture stabilization techniques for port and harbor constructions in Japan-deep mixing method, premix method, light-weight method", 23-40.
- Kramer, S.L. (1996), Geotechnical earthquake engineering (Pearson Education India).
- Lee, C.J., Wei, Y.C. and Kuo, Y.C. (2012), "Boundary effects of a laminar container in centrifuge shaking table tests", Soil Dyn. Earthq. Eng., 34(1), 37-51. https://doi.org/10.1016/j.soildyn.2011.10.011.
- Liu, L. and Dobry, R. (1997), "Seismic response of shallow foundation on liquefiable sand", J. Geotech. Geoenviron. Eng., 123(6), 557-567. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(557).
- Lou, M., Wang, H., Chen, X. and Zhai, Y. (2011), "Structure-soil-structure interaction: Literature review", Soil Dyn. Earthq. Eng., 31(12), 1724-1731. https://doi.org/10.1016/j.soildyn.2011.07.008.
- Miyajima, M., Setiawan, H., Serikawa, Y. and Yoshida, M. (2019), "Liquefaction-induced damage in recent earthquakes and new countermeasures against liquefaction", In IACGE 2018: Geotechnical and Seismic Research and Practices for Sustainability., 557-565, American Society of Civil Engineers Reston, VA.
- Namikawa, T., Koseki, J. and Suzuki, Y. (2007), "Finite element analysis of lattice-shaped ground improvement by cement-mixing for liquefaction mitigation", Soils Found., 47(3), 559-576. https://doi.org/10.3208/sandf.47.559.
- Orense, R., Morimoto, I., Yamamoto, Y.A., Yumiyama, T., Yamamoto, H. and Sugawara, K. (2003), "Study on wall-type gravel drains as liquefaction countermeasure for underground structures", Soil Dyn. Earthq. Eng., 23(1), 19-39. https://doi.org/10.1016/S0267-7261(02)00152-5.
- Ozden, S., Akpinar, E., Erdogan, H. and Atalay, HM. (2014), "Performance of precast concrete structures in October 2011 Van earthquake, Turkey", Mag. Concrete Res., 66(11), 543-552. https://doi.org/10.1680/macr.13.00097.
- Porbaha, A., Zen, K. and Kobayashi, M. (1999), "Deep mixing technology for liquefaction mitigation", J. Infrastruct. Syst., 5(1), 21-34. https://doi.org/10.1061/(ASCE)1076-0342(1999)5:1(21).
- Prasad, S., Towhata, I., Chandradhara, G. and Nanjundaswamy, P. (2004), "Shaking table tests in earthquake geotechnical engineering", Current Sci., 87(10), 1398-1404. https://www.jstor.org/stable/24109480. 109480
- Rayamajhi, D., Nguyen, T.V., Ashford, S.A., Boulanger, R.W., Lu, J., Elgamal, A. and Shao, L. (2014), "Numerical study of shear stress distribution for discrete columns in liquefiable soils", J. Geotech. Geoenviron. Eng., 140(3), 04013034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000970.
- Rayhani, M.H. and El Naggar, M.H. (2008), "Seismic response of sands in centrifuge tests", Can. Geotech. J., 45(4), 470-483. https://doi.org/10.1139/T07-097.
- Sadrekarimi, A. and Ghalandarzadeh, A. (2005), "Evaluation of gravel drains and compacted sand piles in mitigating liquefaction", Proceedings of the Institution of Civil Engineers-Ground Improvement., 9(3), 91-104. https://doi.org/10.1680/grim.2005.9.3.91.
- Seed, H.B. and Booker, J.R. (1977), "Stabilization of potentially liquefiable sand deposits using gravel drains", J. Geotech. Eng. Division., 103(7), 757-768. https://doi.org/10.1061/AJGEB6.0000453.
- Shahraki, M., Rafiee-Dehkharghani, R. and Behnia, K. (2018), "Three-dimensional Finite Element modeling of stone column-improved soft saturated ground", Civil Eng. Infrastruct. J., 51(2), 389-403. https://doi.org/10.7508/ceij.2018.02.009.
- Siddharthan, R.V. and Porbaha, A. (2008a), "Seismic response evaluation of sites improved by deep mixing, Part 2: Verification", Proceedings of the Institution of Civil Engineers-Ground Improvement., 161(3), 163-169. https://doi.org/10.1680/grim.2008.161.3.153.
- Siddharthan, R.V. and Porbaha, A. (2008b), "Seismic response evaluation of sites improved by deep mixing, Part I: Proposed approach", Proceedings of the Institution of Civil Engineers-Ground Improvement., 161(3), 153-162. https://doi.org/10.1680/grim.2008.161.3.163.
- Tang, L., Cong, S., Ling, X., Lu, J. and Elgamal, A. (2015), "Numerical study on ground improvement for liquefaction mitigation using stone columns encased with geosynthetics", Geotext. Geomembranes, 43(2), 190-195. https://doi.org/10.1016/j.geotexmem.2014.11.011.
- Tsukamoto, Y., Ishihara, K., Sawada, S. and Fujiwara, S. (2012), "Settlement of rigid circular foundations during seismic shaking in shaking table tests", Int. J. Geomech., 12(4), 462-470. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000153.
- Turan, A., Hinchberger, S.D. and El Naggar, H. (2009), "Design and commissioning of a laminar soil container for use on small shaking tables", Soil Dyn. Earthq. Eng., 29(2), 404-414. https://doi.org/10.1016/j.soildyn.2008.04.003.
- Yang, F.O., Fan, G., Wang, K., Yang, C., Lyu, W. and Zhang, J. (2021), "A large-scale shaking table model test for acceleration and deformation response of geosynthetic encased stone column composite ground", Geotext. Geomembranes, https://doi.org/10.1016/j.geotexmem.2021.05.013.
- Zeng, X. and Schofield, A.N. (1996), "Design and performance of an equivalent-shear-beam container for earthquake centrifuge modelling", Geotechnique., 46(1), 83-102. https://doi.org/10.1680/geot.1996.46.1.83.
- Zhou, H.Z., Zheng, G., Yu, X.X., Zhang, T.Q. and Liu, J.J. (2018), "Bearing capacity and failure mechanism of ground improved by deep mixed columns", J. Zhejiang Univ.-SCi. A, 19(4), 266-276. https://doi.org/10.1631/jzus.A1700517.