참고문헌
- Arama, Z.A., Kayabekir, A.E., Bekdas, G., Kim, S. and Geem Z.W., (2021), "The usage of the harmony search algorithm for the optimal design problem of reinforced concrete retaining walls" Appl. Sci., 11(3), 1343. https://doi.org/10.3390/app11031343.
- Azar, B.F., Hadidi, A. and Rafiee, A. (2015), "An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions", Struct. Eng. Mech., 55(5), 979-999. https://doi.org/10.12989/sem.2015.55.5.979.
- Babu, G.L.S. and Singh, V.P. (2011), "Reliability-based load and resistance factors for soil-nail walls", Can. Geotech. J., 48(6), 915- 930. https://doi.org/10.1139/t11-005.
- Benayoun, F., Boumezerane, D., Bekkouche, S.R. and Ismail, F. (2021), "Optimization of geometric parameters of soil nailing using response surface methodology", Arabian J. Geosci., 14, 1965. https://doi.org/10.1007/s12517-021-08280-z.
- Chakraborty, S. and Rajib Chowdhury, R. (2016), "Assessment of polynomial correlated function expansion for high-fidelity structural reliability analysis", Struct. Saf., 59, 9-19. https://doi.org/10.1016/j.strusafe.2015.10.002.
- Der Kiureghian, A.D. and Stefano, M.D. (1991), "Efficient algorithm for second-order reliability analysis", J. Eng. Mech., 117(12), 2904-2923. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904).
- Der Kiureghian, A. (2005), Engineering Design Reliability Handbook, CRC Press, Boca Raton, FL, USA.
- Ditlevsen, O. (1982), "Model uncertainty in structural reliability", Struct. Saf., 1(1), 73-86. https://doi.org/10.1016/0167-4730(82)90016-9.
- Doan, B.Q., Liu, G. and Xu, C. (2018), "An efficient approach for reliability-based design optimization combined sequential optimization with approximate models", Int. J. Comput. Methods, 15(1), 1850018. https://doi.org/10.1142/S0219876218500184.
- Du, X. (2005), First-Order and Second-Reliability Methods, in Probabilistic Engineering Design, Missouri S&T, Rolla, ME, USA.
- Duncan, J.M. (2000), "Factors of safety and reliability in geotechnical engineering". J. Geotech. Geoenviron. Eng., 126(4), 307-316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307).
- Fan, C.C. and Luo, J.H. (2008), "Numerical study on the optimum layout of soil-nailed slopes", Comput. Geotech., 35(4), 585-599. https://doi.org/10.1016/j.compgeo.2007.09.002.
- Farsani, A.M. and Keshtegar, B. (2015), "Reliability analysis of corroded reinforced concrete beams using enhanced HL-RF method", Civil Eng. Infrastruct. J., 48(2), 297-304. https://doi.org/10.7508/CEIJ.2015.02.006.
- FHWA. (2003), Geotechnical engineering circular No. 7 soil nail walls. Federal Highway Administration, Washington, D.C. Report FHWA0-IF-03-017.
- Ghareh, S. (2015), "Parametric assessment of soil-nailing retaining structures in cohesive and cohesionless soils" Measurement, 73, 341-351. https://doi.org/10.1016/j.measurement.2015.05.043
- Gong, J.X. and Yi, P. (2011), "A robust iterative algorithm for structural reliability analysis", Struct. Multidiscip. O., 43(4), 519-527. https://doi.org/10.1007/s00158-010-0582-y.
- Gong, J.X., Yi, P. and Zhao, N. (2014), "Non-gradient-based algorithm for structural reliability analysis", J. Eng. Mech., 140(6), 04014029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000722.
- Goswami, S., Ghosh, S. and Chakraborty, S. (2016), "Reliability analysis of structures by iterative improved response surface method", Struct. Saf., 60, 56-66. https://doi.org/10.1016/j.strusafe.2016.02.002
- Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Structures, 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.
- Hasofer, A.M. and Lind, N.C. (1974), "Exact and invariant second-moment code format", J. Eng. Mech. Division, 100(1), 111-121. https://doi.org/10.1061/JMCEA3.0001848.
- Hosseini, M., Naeini, S.A.M., Dehghani, A.A. and Khaledian, Y. (2016), "Estimation of soil mechanical resistance parameter by using particle swarm optimization, genetic algorithm and multiple regression methods", Soil Tillage Res., 157, 32-42. https://doi.org/10.1016/j.still.2015.11.004.
- Huu, V.H., Thoi, T.N., Anh, L.L. and Trang, T.N. (2016), "An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures", Adv. Eng. Softw., 92, 48-56. https://doi.org/10.1016/j.advengsoft.2015.11.001.
- Johari, A. and Fooladi, H. (2022), "Simulation of the conditional models of borehole's characteristics for slope reliability assessment", Transport. Geotech., 35, 100778. https://doi.org/10.1016/j.trgeo.2022.100778.
- Johari, A. and Golkarfard, H. (2018), "Reliability analysis of unsaturated soil sites based on fundamental period throughout Shiraz, Iran", Soil Dyn. Earthq. Eng., 115, 183-197. https://doi.org/10.1016/j.soildyn.2018.08.012.
- Johari, A., Golkarfard, H. and Mesbahi, M. (2022), "The effect of nano-clay stabilizing treatment on the real excavation wall failure: A case study", Scientia Iranica, 29(3), 1006-1023. https://doi.org/10.24200/SCI.2022.56364.4690.
- Johari, A., Vali, B. and Golkarfard, H. (2021), "System reliability analysis of ground response based on peak ground acceleration considering soil layers cross-correlation", Soil Dyn. Earthq. Eng., 141, 106475. https://doi.org/10.1016/j.soildyn.2020.106475.
- Johari, A., Hajivand A.K. and Binesh, S.M. (2020), "System reliability analysis of soil nail wall using random finite element method", Bull. Eng. Geol. Environ., 79, 2777-2798. https://doi.org/10.1007/s10064-020-01740-y.
- Kalantari, A.R. and Johari, A. (2022), "System reliability analysis for seismic stability of the soldier pile wall using the conditional random finite-element method", Int. J. Geomech., 22(10), 04022159. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002534.
- Kalantari, A.R., Johari, A., Zandpour, M. and Kalantari, M. (2023), "Effect of spatial variability of soil properties and geostatistical conditional simulation on reliability characteristics and critical slip Surfaces of Soil Slopes", Transport. Geotech., 100933. https://doi.org/10.1016/j.trgeo.2023.100933.
- Kalehsar, R.I., Khodaei, M., Dehghan, A.N. and Najafi, N., (2021), "Numerical modeling of effect of surcharge load on the stability of nailed soil slopes", Modeling Earth Syst. Environ., https://doi.org/10.1007/s40808-021-01087-7.
- Kaveh, A. and Mahdavi, V.R. (2014), "Colliding bodies optimization: A novel meta-heuristic method", Comput. Struct., 139, 18-27. https://doi.org/10.1016/j.compstruc.2014.04.005.
- Kaveh, A. Massoudi, M.S. and Ghanooni Bagha, M. (2014), "Structural reliability analysis using charged system search algorithm", Iranian J. Sci. Tech T. Civil Eng., 38(2), 439-448. https://doi.org/10.22099/IJSTC.2014.2420.
- Keshtegar, B. (2016), "Chaotic conjugate stability transformation method for structural reliability analysis", Comput. Method. Appl. M., 310, 866-885. https://doi.org/10.1016/j.cma.2016.07.046.
- Keshtegar. B. and Hao. P. (2018), "Enhanced single-loop method for efficient reliability-based design optimization with complex constraints", Struct. Multidiscip. O., 57(4), 1731-1747. https://doi.org/10.1007/s00158-017-1842-x.
- Le, L.A., Vinh, T.B., Huu, V.H. and Thoi, T.N. (2017), "An efficient coupled numerical method for reliability-based design optimization of steel frames", J. Constr. Steel Res., 138, 389-400. https://doi.org/10.1016/j.jcsr.2017.08.002.
- Lee, J.O., Yang, Y.S. and Ruy, W.S. (2002), "A comparative study on reliability-index and target-performance-based probabilistic structural design optimization", Comput. Struct., 80(3-4), 257-269. https://doi.org/10.1016/S0045-7949(02)00006-8.
- Lehky. D., Slowik. O. and Novak. D. (2018), "Reliability-based design: Artificial neural networks and double-loop reliability-based optimization approaches", Adv. Eng. Softw., 117, 123-135. https://doi.org/10.1016/j.advengsoft.2017.06.013.
- Liu, P.L. and Der Kiureghian, A. (1991), "Optimization algorithms for structural reliability", Struct. Saf., 9(3), 161-177. https://doi.org/10.1016/0167-4730(91)90041-7.
- Liu, Q. and Paavola, J. (2015), "Drift reliability-based optimization method of frames subjected to stochastic earthquake ground motion", Appl. Math. Model., 39, 982-999. https://doi.org/10.1016/j.apm.2014.07.021.
- Makhduomi, H., Keshtegar, B. and Shahraki, M. (2017), "A comparative study of first-order reliability method-based steepest descent search directions for reliability analysis of steel structures", Adv. Civil Eng., 8643801. https://doi.org/10.1155/2017/8643801.
- Manahiloh, K.N., Nejad, M.M. and Momeni, M.S., (2015), "Optimization of design parameters and cost of geosynthetic-reinforced earth walls using harmony search algorithm", Int. J. Geosynth. Ground Eng., 1, 15. https://doi.org/10.1007/s40891-015-0017-3.
- Meng, Z., Li, G., Yang, D. and Zhan, L. (2017), "A new directional stability transformation method of chaos control for first-order reliability analysis", Struct. Multidiscip. Optim., 55(2), 601-612. https://doi.org/10.1007/s00158-016-1525-z.
- Pak, A., Maleki, J., Aghakhani, N. and Yousefi, M., (2019), "Numerical investigation of stability of deep excavations supported by soil-nailing method", Geomech. Geoeng., 16(6), 434-451. https://doi.org/10.1080/17486025.2019.1680878.
- Patra, C.R. and Basudhar, P.K. (2005), "Optimum design of nailed soil slopes", Geotech. Geol. Eng., 23, 273-296. https://doi.org/10.1007/s10706-004-2146-7.
- Rackwitz, R. and Flessler, B. (1978), "Structural reliability under combined random load sequences", Comput. Struct., 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9.
- Rashki, M., Miri, M. and Moghaddam, M.A. (2012), "A new efficient simulation method to approximate the probability of failure and most probable point", Struct. Saf., 39, 22-29. https://doi.org/10.1016/j.strusafe.2012.06.003.
- Rawat, S. and Gupta, A.K., (2016), "Analysis of a nailed soil slope using limit equilibrium and finite element methods", Int. J. Geosynth. Ground Eng., 2, 34. https://doi.org/10.1007/s40891-016-0076-0.
- Santosh, T., Saraf, R., Ghosh, A. and Kushwaha, H. (2006), "Optimum step length selection rule in modified HL-RF method for structural reliability", Int. J. Pressure Vessels Piping, 83(10), 742-748. https://doi.org/10.1016/j.ijpvp.2006.07.004
- Seo, H.J., Lee, I. and Lee, S.W. (2014), "Optimization of soil nailing design considering three failure modes" KSCE J. Civil Eng. Geotech. Eng., 18(2), 488-496. https://doi.org/10.1007/s12205-014-0552-9.
- Shamsaddinlou, A., Shirgir, S., Hadidi, A. and Azar, B.F. (2023), "An efficient reliability-based design of TMD & MTMD in nonlinear structures under uncertainty", Structures, 51, 258-274. https://doi.org/10.1016/j.istruc.2023.03.053.
- Sharma, A. and Ramkrishnan, R. (2020), "Parametric optimization and multi-regression analysis for soil nailing using numerical approaches", Geotech. Geol. Eng., 38, 3505-3523. https://doi.org/10.1007/s10706-020-01230-8.
- Shirgir, S., Shamsaddinlou, A., Zare, R.N., Zehtabiyan, S. and Bonab, M.H. (2023), "An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition", Reliab. Eng. Syst. Safe., 232, 109077. https://doi.org/10.1016/j.ress.2022.109077.
- Tu. J. and Choi. K.K. and Park, Y.H. (1999), "A new study on reliability based design optimization", ASME J. Mech.Design, 121(4), 557-564. https://doi.org/10.1115/1.2829499.
- Vazirizade, S.M., Nozhati, S. and Zadeh, M.A. (2017), "Seismic reliability assessment of structures using artificial neural network", J. Build. Eng., 11, 230-235. https://doi.org/10.1016/j.jobe.2017.04.001.
- Villalobos, S.A. and Villalobos, F.A. (2021), "Effect of nail spacing on the global stability of soil nailed walls using limit equilibrium and finite element methods", Transport. Geotech., 26, 100454. https://doi.org/10.1016/j.trgeo.2020.100454.
- Zhao, Q., Chen, X., Ma, Z. and Lin, Y. (2016), "A comparison of deterministic, reliability-based topology optimization under uncertainties", Acta Mech. Solida Sinica, 29(1), 31-45. https://doi.org/10.1016/S0894-9166(16)60005-8.