DOI QR코드

DOI QR Code

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab (Department of Civil Engineering, Faculty of Civil and Architecture Engineering, Malayer University) ;
  • Vahed Ghiasi (Department of Civil Engineering, Faculty of Civil and Architecture Engineering, Malayer University) ;
  • Aliakbar Shirzadi Javid (Department of Civil Engineering, Iran University of Science and Technology)
  • 투고 : 2023.03.10
  • 심사 : 2023.05.17
  • 발행 : 2023.09.25

초록

Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.

키워드

과제정보

The research described in this paper was financially supported by the University of Malayer.

참고문헌

  1. Ali, M.S., Leyne, E., Saifuzzaman, M. and Mirza, M.S. (2018), "An experimental study of electrochemical incompatibility between repaired patch concrete and existing old concrete", Constr. Build. Mater., 174, 159-172. https://doi.org/10.1016/j.conbuildmat.2018.04.059.
  2. Balabanic, G. (2011), "3D numerical modelling of steel corrosion in concrete structures", 53, 4166-4177. https://doi.org/10.1016/j.corsci.2011.08.026.
  3. Barkey, D.P. (2004), "Corrosion of steel reinforcement in concrete adjacent to surface repairs", Mater. J., 101(4), 266-272. https://doi.org/10.14359/13359.
  4. Bertolini, L. and Redaelli, E. (2009), "Throwing power of cathodic prevention applied utilizing sacrificial anodes to partially submerged marine reinforced concrete piles: Results of numerical simulations", Corros. Sci., 51(9), 2218-2230. https://doi.org/10.1016/j.corsci.2009.06.012.
  5. Castro, P., Pazini, E., Andrade, C. and Alonso, C. (2003), "Macrocell activity in slightly chloride-contaminated concrete induced by reinforcement primers", Corros., 59(6), 535-546. https://doi.org/10.5006/1.3277585
  6. Cao, C., Cheung, M.M.S. and Chan, B.Y.B. (2013), "Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate", Corros. Sci., 69(24), 97-109. https://doi.org/10.1016/j.corsci.2012.11.028.
  7. Chen, H.P. and Nepal, J. (2020), "Load bearing capacity reduction of concrete structures due to reinforcement corrosion", Struct. Eng. Mech., 75(4), 455-464. https://doi.org/10.12989/sem.2020.75.4.455.
  8. Cheung, M.M.S. and Cao, C. (2013), "Application of cathodic protection for controlling macrocell corrosion in chloride contaminated RC structures", Constr. Build. Mater., 45, 199-207. https://doi.org/10.1016/j.conbuildmat.2013.04.010.
  9. Christodoulou, C., Goodier, C., Austin, S., Webb, J. and Glass, G.K. (2013), "Diagnosing the cause of incipient anodes in repaired reinforced concrete structures", Corros. Sci., 69, 123-129. https://doi.org/10.1016/j.corsci.2012.11.032.
  10. Chuanqing, F., Rui, H. and Kejin, W. (2023), "Influences of corrosion degree and uniformity on bond strength and cracking pattern of cement mortar and PVA-ECC", J. Mater. Civil Eng., 35(6), 1943-1953. https://doi.org/10.1061/JMCEE7.MTENG14846.
  11. Gulikers, J. (2005), "Theoretical considerations on the supposed linear relationship between concrete resistivity and corrosion rate of steel reinforcement", Mater. Corros., 56(6), 393-403. https://doi.org/10.1002/maco.200403841.
  12. Gulikers, J. and Raupach, M. (2006), "Numerical models for the propagation period of reinforcement corrosion-Comparison of a case study calculated by different researchers", Mater. Corros., 57(8), 618-627. https://doi.org/10.1002/maco.200603993.
  13. Ge, J. and Isgor, O.B. (2007), "Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete", Mater. Corros., 58(8), 573-582. https://doi.org/10.1002/maco.200604043.
  14. Ghiasi, V. (2012), "Effects of weak rock geomechanical properties on tunnel stability", Ph.D. Dissertation, Universiti Putra Malaysia, Selangor, Malaysia.
  15. Ghiasi, V. and Eskandari, S. (2023), "Comparing a single pile's axial bearing capacity using numerical modeling and analytical techniques", Result. Eng., 17, 100893. https://doi.org/10.1016/j.rineng.2023.100893.
  16. Ghiasi, V. and Farzan, A. (2019), "Numerical study of the effects of bed resistance and groundwater conditions on the behavior of geosynthetic reinforced soil walls", Arab. J. Geosci., 12, 729-738. https://doi.org/10.1007/s12517-019-4947-2.
  17. Ghods, P., Isgor, O.B. and Pour-Ghaz, M. (2008), "Experimental verification and application of a practical corrosion model for uniformly depassivated steel in concrete", Mater. Struct., 41(7), 1211-1223. https://doi.org/10.1617/s11527-007-9320-3.
  18. Guo, B. and Ou, J. (2015), "Numerical simulation of the impressed current cathodic protection system for a reinforced concrete structure", 2015 Fifth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, September.
  19. Hassanein, A.M., Glass, G.K. and Buenfeld, N.R. (2002), "Protection current distribution in reinforced concrete cathodic protection systems", Cement Concrete Compos., 24(1), 159-167. https://doi.org/10.1016/S0958-9465(01)00036-1.
  20. Hiemer, F., Jakob, D., Kessler, S. and Gehlen, C. (2018), "Chloride induced reinforcement corrosion in cracked and coated concrete: From experimental studies to time-dependent numerical modeling", Mater. Corros., 69(11), 1526-1538. https://doi.org/10.1002/maco.201810148.
  21. Hornbostel, K., Angst, U.M., Elsener, B., Larsen, C.K. and Geiker, M.R. (2016), "Influence of mortar resistivity on the rate-limiting step of chloride-induced macro-cell corrosion of reinforcing steel", Corros. Sci., 110, 46-56. https://doi.org/10.1016/j.corsci.2016.04.011.
  22. Hornbostel, K. (2015), "The role of concrete resistivity in chloride- induced macro-cell corrosion of reinforcement", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
  23. Hornbostel, K., Angst, U.M.B., Elsener, C., Larsen, K. and Geiker, M.R. (2015), "On the limitations of predicting the ohmic resistance in a macro-cell in mortar from bulk resistivity measurements", Cement Concrete Res., 76, 147-158. http://doi.org/10.1016/j.cemconres.2015.05.023.
  24. Hornbostel, K., Larsen, C.K. and Geiker, M.R. (2013), "Relationship between concrete resistivity and corrosion rate - A literature review", Cement Concrete Compos., 39, 60-72. http://doi.org/10.1016/j.cemconcomp.2013.03.019.
  25. Huang, L., Jin, X., Fu, C., Ye, H. and Dong, X. (2020), "Stochastic characteristics of reinforcement corrosion in concrete beams under sustained loads", Comput. Concrete, 25(5), 447-460. https://doi.org/10.12989/cac.2020.25.5.447.
  26. Isgor, O.B. and Razaqpur, A.G. (2006), "Modelling steel corrosion in concrete structures", Mater. Struct., 39(3), 291-302. https://doi.org/10.1007/s11527-005-9022-7.
  27. Jaggi, S., Bohni, H. and Elsener, B. (2007), "Macrocell corrosion of steel in concrete - Experiments and numerical modelling", Corrosion of Reinforcement in Concrete: Mechanisms, Monitoring, Inhibitors and Rehabilitation Techniques, CRC Press, Boca Raton, FL, USA.
  28. Kaesche, H. (2012), Corrosion of Metals: Physicochemical Principles and Current Problems, Springer Science & Business Media, University of Erlangen, Nurenberg, Germany.
  29. Kazemian, S., Prasad, A. and Huat, B.B.K. (2012), "Effects of cement-sodium silicate system grout on tropical organic soils", Arab. J. Sci. Eng., 37, 2137-2148. https://doi.org/10.1007/s13369-012-0315-1.
  30. Kim, C.Y. and Kim, J.K. (2008), "Numerical analysis of localized steel corrosion in concrete", Constr. Build. Mater., 22(6), 1129-1136. https://doi.org/10.1007/978-94-007-0677-4_2.
  31. Laurens, S., Henocq, P., Rouleau, N., Deby, F., Samson, E., Marchand, J. and Bissonnette, B. (2016), "Steady-state polarization response of chloride-induced macrocell corrosion systems in steel reinforced concrete - Numerical and experimental investigations", Cement Concrete Res., 79, 272-290. https://doi.org/10.1016/j.cemconres.2015.09.021.
  32. Lozinguez, E., Barthelemy, J.F., Bouteiller, V. and Desbois, T. (2018), "Contribution of sacrificial anode in reinforced concrete patch repair: Results of numerical simulations", Constr. Build. Mater., 178, 405-417. https://doi.org/10.1016/j.conbuildmat.2018.05.063.
  33. Muehlenkamp, E., Koretsky, B.M.D. and Westall, J.C. (2005), "Effect of moisture on the spatial uniformity of cathodic protection of steel in reinforced concrete", Corros., 61(6), 519-533. https://doi.org/10.5006/1.3278188.
  34. Ayinde, O.O., Zuo, X.B. and Yin, G.J. (2019), "Numerical analysis of concrete degradation due to chloride-induced steel corrosion", Adv. Concrete Constr., 7(4), 203-210. https://doi.org/10.12989/acc.2019.7.4.203.
  35. Page, C.L. )1982), "Aspects of the electrochemistry of steel in concrete", Nat., 297, 109-115. https://doi.org/10.1038/297109a0.
  36. Pour-Ghaz, M., Isgor, O.B. and Ghods, P. (2009), "The effect of temperature on the corrosion of steel in concrete. Part 1: Simulated polarization resistance tests and model development", Corros. Sci., 51(2), 415-425. https://doi.org/10.1016/j.corsci.2008.10.034.
  37. Pour-Ghaz, M., Burkan Isgor, O. and Ghods, P. ( 2009), "The effect of temperature on the corrosion of steel in concrete. Part 2: Model verification and parametric study", Corros. Sci., 51(2), 426-433. https://doi.org/10.1016/j.corsci.2008.10.036.
  38. Raupach, M. and Gulikers, J. (2001), "Investigations on cathodic control of chloride-induced reinforcement corrosion", Mater. Corros., 52(10), 766-770. https://doi.org/10.1002/1521-4176(200110)52:10<766::AID-MACO766>3.0.CO;2-S
  39. Raupach, M. and Buttner, T. (2014), Concrete Repair to EN 1504: Diagnosis, Design, Principles and Practice, CRC Press, Boca Raton, FL, USA.
  40. Redaelli, E., Bertolini, L., Peelen, W. and Polder, R. (2006), "FEM-models for the propagation period of chloride induced reinforcement corrosion", Mater. Corros., 8, 628-635. https://doi.org/10.1002/maco.200603994.
  41. Recommendation, R.D. (1994), "Draft recommendation for repair strategies for concrete structures damaged by reinforcement corrosion", Mater. Struct., 27)171(, 415-436. https://doi.org/10.1007/BF02473446.
  42. Rui, H., Hongyan, M., Rezwana, B.H., Chuanqing, F., Xianyu, J. and Jiahao, H. (2018), "Determining porosity and pore network connectivity of cement-based materials by a modified noncontact electrical resistivity measurement: Experiment and theory", Mater. Des., 156, 82-92. https://doi.org/10.1016/j.matdes.2018.06.045.
  43. Rui, H., Chuanqing, F., Hongyan, M. and Hailong, Y. (2020), "Prediction of effective chloride diffusivity of cement paste and mortar from microstructural features", J. Mater. Civil Eng., 32(8), 04020211-04020221. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003288.
  44. Rui, H., Hailong, Y., Hongyan, M. and Chuanqing, F. (2019), "Correlating the chloride diffusion coefficient and pore structure of cement-based materials using modified noncontact electrical resistivity measurement", J. Mater. Civil Eng., 31(3), 04019006-040190018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002616.
  45. Sagues, A.A. and Kranc, S.C. (1993), "On the determination of polarization diagrams of reinforcing steel in concrete", Corros., 48(8), 624-633. https://doi.org/10.5006/1.3315982.
  46. Shirkhani, A., Davarnia, D. and Farahmand Aza, B. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273.
  47. Soleimani, S., Ghods, P., Isgor, O.B. and Zhang, J. (2010), "Modeling the kinetics of corrosion in concrete patch repairs and identification of governing parameters", Cement Concrete Compos., 32(5), 360-368. https://doi.org/10.1016/j.cemconcomp.2010.02.001.
  48. Warkus, J., Brem, M. and Raupach, M. (2006), "BEM-models for the propagation period of chloride induced reinforcement corrosion", Mater. Corros., 57(8), 636-641. https://doi.org/10.1002/maco.200603995.
  49. Warkus, J. and Raupach, M. (2010), "Modelling of reinforcement corrosion - geometrical effects on macrocell corrosion", Mater. Corros., 61(6), 494-504. https://doi.org/10.1002/maco.200905437.
  50. Warkus, J. and Raupach, M. (2008), "Numerical modelling of macrocells occurring during corrosion of steel in concrete", Mater. Corros., 59(2), 122-130. https://doi.org/10.1002/maco.200905437.
  51. Warkus, J., Raupach, M. and Gulikers, J. (2006), "Numerical modelling of corrosion - Theoretical backgrounds", Mater. Corros., 57(8), 614-617. https://doi.org/10.1002/maco.200603992.
  52. Valipour, M., Shekarchi, M. and Ghods, P. (2016), "Comparative studies of experimental and numerical techniques in measurement of corrosion rate and time-to-corrosion-initiation of rebar in concrete in marine environments", Cement Concrete Compos., 48, 98-107. https://doi.org/10.1016/j.cemconcomp.2013.11.001.
  53. Yang, B., Yu, L., Wu, M. and Li, B. (2014), "Practical model for predicting corrosion rate of steel reinforcement in concrete structures", Constr. Build. Mater., 54, 385-401. https://doi.org/10.1016/j.conbuildmat.2013.12.046.
  54. Ying-shu, L.F.Y. and Yan-hong, G.O.M. (2009), "Theoretical models of corrosion rate of steel bars embedded in concrete", J. South China Univ. Technol., 37, 83-88.